Glyphosate and My Dog

One of the most popular herbicides in the world, it was first patented by Monsanto in 1974. Since then, glyphosate tolerant genetically modified crops were commercialised, paving the way for its increasing use, year on year. Here at My Pet Nutritionist, this makes our stomachs churn a little, and we’ll let you know why. What is Glyphosate? Glyphosate is a systemic, broad-spectrum herbicide. This means that it moves throughout the plant, and kills any plant not genetically modified to resist it. Glyphosate is a strong chelating agent; it creates complexes that immobilise the mineral micronutrients of the soil (calcium, iron,magnesium, manganese, nickel, zinc) making them unavailable to plants. It also acts as a powerful antibiotic – killing all bacteria in the soil. Due to its antibacterial properties, glyphosate has been reported to affect the gut microbiota of animals, killing the beneficial bacteria and leaving the pathogenic ones behind. This has been linked to adverse effects in farm animals, which feed on glyphosate-treated soya and corn feed. For more information on the importance of a diverse microbiome, checkout our blogs: Here Here Here Glyphosate and Health The International Agency for Research on Cancer (IARC) of the World Health Organisation (WHO), classified glyphosate as a “probable human carcinogen”, following a thorough analysis performed by 17 independent world leading experts from 11 countries using only publicly available studies. The conclusion on experimental animals was based on two experiments where mice had developed malignant tumours as a result of exposure to glyphosate alone. Findings Here. Glyphosate and Hormone Glyphosate alone and glyphosate-based products alter the hormone metabolism in different mammalian cell lines and have been reported to reduce the conversion of androgens to oestrogens (resulting in production of more male than female hormones). In experimental studies with mice, glyphosate-based products also alter the reproductive hormone metabolism and reduce fertility. Findings Here. Glyphosate, Growth and Development Experimental animals exposed to glyphosate have given birth to foetuses with increased heart malformations and abnormalities, absent kidneys, distorted ribs, lungs and skeleton, as well as embryonic deaths. Findings Here. Glyphosate and the Nervous System Glyphosate and glyphosate-based products have been seen to affect the growth and development of nerve cells also. Glyphosate has been reported to disrupt the function of brain nerve signalling, brain cell organelles (mitochondria) and cause neuronal cell death. Findings Here. Whilst these all offer food for thought; we’re going to focus on cancer research a little further. When concluding that it is a probable human carcinogen,researchers took into consideration the strong evidence of genotoxicity (DNA damage) and oxidative stress (tissue/cell damage) in humans and laboratory animals following exposure to glyphosate-pesticides and its metabolites. As we know, the first step to cells becoming cancerous is unusual DNA (deoxyribonucleic acid) structure. DNA contains the instructions that ours and our dog’s cells need to develop, live, and reproduce. These instructions are passed down from parents to their offspring. Every cell must undergo growth, and then it must die. Cancer cells on the other hand receive aberrant instructions. Of interest here is the concept that these instructions are passed down from parents to their offspring, and in relation to glyphosate, it has been established as genotoxic. Here, you not only have to consider your dog’s exposure to the product, but that the damage could be seen in future generations, and equally, your dog could be experiencing health issues because of their parent’s exposure. This is of particular concern when a study highlighted glyphosate has been found in several commercial cat and dog foods on the market. Findings Here. As it is sprayed on many crops, and most commercial foods are crop based, this is of little surprise. Glyphosate has been implicated in the disruption of proteins crucial to detoxification pathways; it affects the host’s ability to remove other environmental chemicals, causing them to be more nephrotoxic than they would otherwise be. This is why, many reviews are now linking glyphosate to kidney disease of unknown origin and non-alcoholic fatty liver disease. Findings Here. Again, this is a worry if these modifications can be passed from generation to generation. Are dogs becoming less efficient at removing environmental chemicals, in a world where we have never had more? We don’t know the answer to that question, but its certainly worth considering. If you would like to learn more about detoxification pathways and toxins found in the home, check out our blogs: Here Here Here How much are us and our pets actually exposed to? Many laboratory tests have demonstrated the possible absorption of glyphosate in the gastro-intestinal tract of humans and mammals, as well as absorption through inhalation, ingestion, and dermal contact. In 2012 the German magazine Oko-Test found traces of glyphosate in wheat flour, oats, and bread in 14 samples out of 20 analysed. In 2014 the Moms Across America group and the SustainablePulse information website reported the presence of glyphosate in human milk in 3 out of 10 samples. In 2015, the National University of La Plata in Argentinadetected traces of glyphosate in 85% of the sample tampons purchased in supermarkets and all analysed samples of medical gauze and cotton. In 2016, research conducted by Boston University and AbraxisLLC revealed the herbicide’s presence in 62% of conventional honeys and in 45% of organic honeys. In 2016, another two studies conducted by the Munich Institute of the Environment and the Consumer Magazine 60 Millions de Consommateurs, found traces of glyphosate in 14 beers, among the best known in Germany (Beck’s, Paulaner, Warsteiner, etc.) and in panty liners from the feminine hygiene company Organyc. In Italy, 100 food products based on flour and 26 samples of drinking water were analysed by the magazine Test-Salvagente, they found traces of glyphosate in half of the food and in two samples of water. Findings Here. The fact that it finds its way into so many different products really shines a light on how we need to pay attention to everything we are exposed to or expose our pets to – including their
Does My Dog Need an Allergy Test?

Here at My Pet Nutritionist, we are often presented with a range of tests, that seemingly identify what your pet is allergic to. These tests will often even highlight how severe the allergy is. But do you want to know a secret? They often don’t help. We realise that this may a bold statement, so we’ll explore the mechanism behind allergies in a little more detail, and why there are better tools to establish what’s going on in your pet. An allergy is an unnecessary immune response to an innocuous substance, but a true allergy can be fatal. Immune Responses The innate immune system provides the first line of defence; broadly divided into physical/chemical barriers and nonspecific response. The physical barriers include the skin and mucosa of the digestive and respiratory tracts. Saliva, tears, and mucous all help to provide a barrier, as does the microbiome of the skin and gut and of course stomach acid. Hair inside the nasal capacity also traps pathogens and environmental pollutants. Pathogens that sneakily get past these first defences are next welcomed by the nonspecific innate response. Here cells recognise and bind to pathogens and engulf them. White blood cells are recruited to the site of infection, leading to the well-known inflammatory response. The inflammatory response, whilst often on the receiving end of bad press, is a vital response to injury, infection,trauma, and other insults. Mast cells release histamine, and histamine causes blood vessels to widen, there by increasing blood flow to the area and so, we have the usual signs like redness, heat, swelling and pain associated with inflammation. Mast cells are particularly numerous at potential sites of injury like the nose, mouth, feet, internal body surfaces and blood vessels. Histamine is also stored and released from cells in the stomach. Histamine is involved in stomach acid secretion, but it also has effects on smooth muscle which is why it is thought to be involved in increased peristalsis (movement of food through the digestive system) in food allergies. This is why antihistamine use can be implicated in poor digestive function. The inflammatory response is also a key player in the third line of defence, adaptive immunity. This system is likewise activated by exposure to pathogens, but it uses an immunological memory to learn about the threat and adjust its response accordingly. The adaptive immune response is much slower to respond to threats and it relies on fewer types of cells to carry out its work. Some of these cells manufacture immunoglobulins which are proteins that circulate in the blood stream and bind to antigens (allergens). Immunoglobulins also known as antibodies, abbreviated as Ig, are involved in our dog’s systems when they fight off infections, but they are also involved in sensitivities or allergic reactions to things in the environment or food. A food allergy or other allergic response is caused by an IgE antibody reacting towards that allergen. IgE binds to mast cells to promote histamine release. IgA is an antibody that lives in mucous membranes, inside nasal cavities, and lungs. It helps to protect the respiratory tract as a first line of defence. IgM is the first immunoglobulin that is encountered in an infection, or vaccines for the first time. IgG is the work horse antibody; it is the soldier, the memory antibody. This is what gets drafted when your dog is exposed to something they have already figured out a response to. Here in lies the problem – many allergy tests claim to test IgG. IgG is the memory antibody – so all this is really indicating is exposure. Tests Available Blood – this test is where a sample of blood is taken. It has been noted to measure total IgE antibodies found in the blood, but there are also specificIgE tests which measure the level of antibodies in response to particular allergens. Other blood tests measure IgG antibodies. There are many test providers to be found online – so what they measure is usually very individual. Fur – these tests are usually carried out using bio resonance technology which measures the frequencies emitted from the hair sample. It is based on the idea that unhealthy cells or organs emit altered electromagnetic waves due to DNA damage. Saliva – these tests generally measure IgM, IgA and IgG. It is thought that the same immunoglobulins that are generally found in the blood, are found in the saliva, but this way is less invasive. That said, there are food sensitivities that are deemed non-IgE, meaning they don’t recruit IgE antibodies, which would suggest a blood test would be inconclusive, despite showing symptoms like vomiting, bloating and diarrhoea. What the Data Shows: Testing often show positive results for apparently healthy dogs (not demonstrating any symptoms of discomfort). Findings here There are often no clear differences in positive reactions between allergic dogs and healthy dogs. Findings here There is no clear difference in total IgE and IgG before starting an elimination diet, and completing an elimination diet, despite there being symptomatic improvement when re-challenged. Findings here When comparing saliva and fur samples from healthy and allergic dogs, the distribution of positive and negative results was no different to that expected by random chance. This sample also include fake fur. Findings here This doesn’t mean the reaction doesn’t occur – what this means is that that testing is inconclusive. For that reason, elimination diets remain the gold standard for diagnosing adverse food reactions in dogs. Findings here A true allergy can be fatal, but true allergies are less common than you would think. In our pets, we are generally tackling sensitivities, and this often starts with a poorly functioning digestive system. In normal conditions, the digestive tract should be impermeable to antigens. When it is damaged, antigens can boldly go where no antigen has gone before, resulting in the immune response we discussed earlier. The inflammatory response, if prolonged, can result in further damage, permeating other antigens, and so the cycle continues. Therefore, gut healing is so
Does My Pet Need to Detox

Everyday, ours and our pet’s bodies are exposed to toxins. They are produced internally in the body, like lactic acid and consist of waste products from gut microbes, hormones, and neurotransmitters. But the largest threat is possibly those external toxins, like air pollution, chemicals from cleaning products and volatile organic compounds from the plug-in air diffuser in your lounge. Here at My Pet Nutritionists, when considering your pet’s well-being, detoxification is largely looked at as part of the health picture. It is thought that in the 25 years between 1970 and 1995, the volume of synthetic organic chemicals produced tripled from about 50 million tonnes to approximately 150 million tons, and this number has grown year on year since. Findings here These toxins can disrupt essential biological structures in the body. A toxin is defined as any substance that must be neutralised and eliminated to avoid its promotion of ill-health if left to accumulate. What surprises most people is that the body produces waste products every second of every day in the form of used hormones, neurotransmitters, or oxidised lipids. For this reason, even if we manage ours and our pet’s environments well, we still need to support our detoxification system, simply to eliminate the exhaust fumes of daily life. So, what is detoxification? Detoxification is carried out by a range of mechanisms and this comes in particularly handy if one pathway is overwhelmed, another can pick up the slack. We can think of it like a waterfall, water will always find a way down. In a healthy system, toxins will be able to find a way out. Initially, the body will attempt to detoxify at source. These locations include the intestinal mucosa, the respiratory mucosa, the microbiome,and the skin epidermis. Whilst these also provide a physical barrier to prevent toxin penetration, they also express a range of enzymes which are essential in sweeping toxins away. Detoxification falls into three phases. The first two phases are concerned with breaking down the toxin in the body, and phase three is concerned with excreting it. For us to manage ours and our dog’s toxic load, all three phases need to be working optimally. Liver Guard Phase I PhaseI is primarily undertaken by a superfamily of enzymes and they are predominantly concentrated in the liver (but are found in the oral and nasal cavity). t also includes enzymes like MAOs or monoamine oxidases to deal with neurotransmitters (those chemical messengers involved in mood and behaviour ) and PON1 or paraoxonase 1 dealing with pesticides and oxidised lipids. The names aren’t important, but the point is that at this stage the body needs to be efficiently producing these enzymes to metabolise the toxins. So, it stands to reason that this stage is particularly nutrient demanding and sufficient levels of key vitamins and minerals like vitamin A, C, E, B1, B2, B3 and iron, along with cysteine, are essential. This phase also generates high numbers of reactive oxygen species, or ROS leading to oxidative stress (there is also evidence of poor antioxidant capacity in obesity). These enzymes are also highly polymorphic – which means they are prone to altered gene expression. If you would like to know how gene expression can alter detoxification in the cat, then check out our blog here. But, whether the expression starts to cause problems can often depend on the nature and exposure to toxins. Once toxins have been passed through phase I, they are not finished with. Intermediate metabolites are produced, and they sit in the body. t’s almost like putting your rubbish in the outside bin, but missing collection day. The rubbish remains. Welcome to phase II Within phase II there are number of pathways and they are all responsible for detoxifying different compounds. Methylation The process of methylation deals with heavy metals, plastics, medications, mould,histamine, hormones, and neurotransmitters. This process requires nutrients like folate, vitamin B6, zinc and magnesium. Many environmental factors can limit methylation capacity including low dietary intake of co-factors, use of proton pump inhibitor medication, stress, use of anti-depressant medication, gut dysbiosis, high exposure to toxins and a high histamine diet. This can then become more of an issue in those with genetic SNPs in the genes that code for the enzymes involved. Poor methylation can also impair bile synthesis, which then impacts on cholesterol maintenance and glucose metabolism. Sulphation The process of sulphation deals with heavy metals, heavy smoke, hormones, neurotransmitters, plastics, phenols, and medications including antibiotics. Efficient sulphation requires an adequate supply of sulphur (included in cruciferous vegetables for example), but also iron, molybdenum and vitamin B12. Deficiency in any of these can result in an accumulation of sulphites and then an increased sensitivity to sulphite containing foods or supplements (MSM for example). Since this pathway modulates catecholamine levels, poor function can result in higher circulating levels too. Glutathione conjugation This deals with heavy metals, plastics, mycotoxins, mould, heavy smoke, pesticides, and medications like steroids. Glutathione is a master antioxidant so is also important in neutralising the reactive oxygen species produced in phase I. Steady supply of the enzymes in this pathway relies on vitamin B2. But what is also of interest is that the more the glutathione pathway becomes overloaded with long-term paracetamol use, the more depleted glutathione stores become, which places increased pressures on other Phase II pathways and Phase I processes. Low selenium also contributes to poorer enzyme function here. Glucuronidation Glucuronidation is involved in managing heavy metals, sex hormones, neurotransmitters, plastics, mould, alcohol, smoke, medications including paracetamol,non-steroidal anti-inflammatories, warfarin and immunosuppressants. Important nutrients in this process include vitamin B3, B6 and iron. The glucuronidation pathway is particularly affected by digestive health. Anything that promotes gut dysbiosis, like antibiotics, high sugar intake or the use of certain medications which later digestive function can result in toxins being recirculated throughout the body. This then results in increased oxidative stress, which has its own ramifications throughout the body. Acetylation Acetylation supports the detoxification of smoke, halides, tyramine, caffeine, neurotransmitters, histamine, and
Lectins and Should My Dog Eat Them?

In 1988 a hospital launched a “healthy eating day” in its staff canteen at lunchtime. One dish contained red kidney beans, and 31 portions were served. At 3pm one of the customers, a surgical registrar, vomited in theatre. Over the next four hours10 more customers suffered profuse vomiting, some with diarrhoea. All had recovered by next day. No pathogens were isolated from the food, but the beans contained an abnormally high concentration of the lectin phyto haemagglutinin. What on earth are these we hear you wonder? Well, lectins are often described as an anti-nutrient and as they are found in potatoes, beans, lentils, peas, soybeans, nightshade vegetables and grains, we thought we’d give you the 411 on them. Lectins are carbohydrate binding proteins present in most plants, especially seeds and tubers like cereals, potatoes, and beans. Their original purpose was protection. They would produce an inflammatory response in the animal that ate them – so they wouldn’t eat them again. Humans and Dogs are largely unable to digest them, but friendly bacteria in the gut can lend a hand. Until recently their main use was as histology and blood transfusion reagents, but in the past few decades we have realised that many lectins are (a) toxic, inflammatory, or both; (b) resistant to cooking and digestive enzymes; and (c) present in much of our food Well, it’s not sounding good is it! The really disturbing finding came with the discovery in 1989 that some food lectins get past the gut wall and deposit themselves in distant organs. At high dietary levels, it is thought that lectins cause damage to the structure of the brush borders of the small intestine. In lectin fed rodents, the mucosal membrane in the small intestine was stripped, compromising the gut integrity. This compromise has also been linked to abnormal bacterial proliferation. Findings here As we know, the gut wall does exactly that – keeps things in and keeps things out! It requires tight junction integrity to ensure rogue particles of food don’t get where they shouldn’t. Whenever and however this integrity is compromised, inflammation ensues! The other issue here is that lectins are also seen to inhibit the repair of resident gut epithelial cells. Sadly, not only do rogue particles get where they shouldn’t, but so do the lectins and because of their binding properties, lectins stimulate antigens on cells that do not normally display them like pancreatic islet and thyroid cells – what this means is the body will attack cells it normally wouldn’t because of the confusion. This is why lectins are sometimes implicated in autoimmune disorders, including cases of rheumatoid arthritis. Lectins and Rheumatoid Arthritis A normal IgG (type of antibody) molecule possesses carbohydrate side chains, which end with the molecule galactose. In rheumatoid arthritis much of the galactose is missing, so the next molecule along—N-acetyl glucosamine—is exposed instead. Wheat lectin has an affinity for this molecule, and so binds (when it normally wouldn’t with the terminal molecule inits normal place). This is why glucosamine has found it’s way as an anti arthritic supplement – wheat lectin can be blocked by N-acetyl-glucosamine. Lectins and Urinary Tract Infections In a similar premise, D-mannose is a sugar with a similar activity to N-acetyl-glucosamine. This too binds to lectins found on some microorganisms. Some bacteria responsible for urinary tract infections contain lectins specific for the sugar mannose and use these lectins to bind tightly to mannose -rich tissue in the bladder walls – therefore initiating infection. D-mannose supplementation provides a decoy for these bacteria. Lectins and Gluten There is also the idea that gluten can act as a lectin with toxic properties for intestinal cells. Together with the gut-associated lymphoid tissue and the neuroendocrine network, the intestinal epithelial barrier plays a role in the tolerance and immunity to non-self-antigens. Zonulin is a protein that helps regulate permeability in the gut by opening and closing tight junctions. Zonulin has been shown to be upregulated in many autoimmune diseases and it appears that gluten may be a strong trigger of zonulin. Lectins and Histamine Lectins also cause discharge of histamine from gastric mast cells which stimulates acid secretion. We need acid secretion to aid digestion, but it’s like the story of Goldilocks again – we need just enough, not too much (or too little). Not only does histamine stimulate acid secretion, but it has also its own little purpose in the body, chiefly the immune response. So, not only do we have rogue particles escaping due to poor gut integrity (thanks to lectins), but we also have increased histamine production, when then increases the likelihood of cross-reactivity. In short, tricking the body into thinking it needs to react to something it most likely doesn’t. Can you see why lectins are often dubbed the great mimics? They confuse the body into doing all sorts of things. They also appear to mimic insulin. Now, insulin is needed in the body, it helps get glucose to where it needs to be, but do we really need things mimicking it? Not when “Low concentrations of wheat germagglutinin (plant lectin) enhance the specific binding of insulin to receptors of fat cells and liver membranes.” Findings here In this case, imitation is not the sincerest form of flattery. But there are other reasons why lectins are deemed anti-nutrients. Animal and cell studies have found that active lectins can interfere with the absorption of minerals, especially calcium, iron, phosphorus, and zinc. Legumes and cereals often contain these minerals, so the presence of lectins may prevent the absorption and use of these minerals in the body. As we have already explored, lectins can also bind to cells lining the digestive tract which may also disrupt the breakdown and absorption of nutrients and affect the growth and action of intestinal flora. However, on the other side of the scale, lectin containing foods are sometimes associated with lower rates of cardiovascular disease and diabetes, because they are rich in fibre. So, what do we do? Lectins are most potent in their raw
Elimination Diets for Dogs

An elimination diet – the wand of all wands. Or at least we would like to think so. Here at My Pet Nutritionist, we regularly utilise elimination diets in our healing plans. But there is often some confusion over their purpose and how best to use them. So, we thought we’d cover, what they are, what they hope to do, and what they can’t do. What is an elimination diet? An elimination diet, also known as exclusion diet, is a diagnostic procedure used to identify foods that an individual/animal cannot consume without adverse effects. Adverse effects may be due to food allergy (IGE), food intolerance (IGG), other physiological mechanisms, or a combination of all of the above. The point to note here is that it is a diagnostic tool – not a long-term lifestyle and in some cases, a means to give the immune system a welcomed break. People often look at certain foods being the culprit or the saviour. But what’s really happening is the bodies inability to deal with certain antigens effectively. As we know, the immune system functions like a radar – always on the lookout for potentially harmful compounds. But, through regular activation it can become hypersensitive and seemingly forget that it does have a tolerance capacity too. Immune Tolerance In the body, there are two types of immune tolerance, one is self-tolerance, and this prevents the development of autoimmune disease. The body accepts its own cells and doesn’t try to kill them (so kind!). But there is also this idea of induced tolerance. Induced Tolerance Induced tolerance occurs when the immune system actively avoids responding to an external antigen. This tolerance is induced by previous encounters with that antigen. An example of induced tolerance is a deliberate manipulation of the immune system to avoid the rejection of transplanted organs or to provide protection from allergic reactions. But induced immunity needs a fully functioning immune system to make the right calls at the right time – this is the basic premise of why we want to carry out an elimination diet. To see what foods might elicit a reaction. Through the removal of antigenic compounds (the foods potentially wreaking havoc), you remove the adverse responses pulling on resources and you can then spend time supporting the various systems in the body, including the immune system, to get your ducks in a row. Why would you do an elimination diet? An elimination diet is often the first port of call for dogs suffering with allergies, intolerances, inflammatory conditions and also behavioural issues. This last point often raises a few eyebrows –but as we know, immune responses are intricately linked with the brain and subsequently behaviour. We not only have sickness behaviour, which makes us hunker down and prevent the spread of virus (evolutionary purpose for survival), but pain simply makes us, and our dogs, miserable. In cases of irritable bowel syndrome, there is a noted visceral hypersensitivity too, which in a nutshell means an even higher sensitivity to pain (and sadly an increased propensity to be miserable). The take home? Allergies, intolerances and inflammatory conditions are all an immune response. So, the point is to lighten the load on the immune system. But we can’t forget there are differences between allergies and intolerances. A food allergy or other allergic response is caused by an IgE antibody reacting towards that allergen. IgE binds to mast cells to promote histamine release. This is an immediate response and in some to certain food allergens can be fatal (anaphylaxis). Hives or instant rashes and swelling can be seen. IgA is an antibody that lives in mucous membranes, inside nasal cavities, and lungs. It helps to protect the respiratory tract as a first line of defence. IgM is the first immunoglobulin that is encountered in an infection, or vaccines for the first time. IgG is the work horse antibody; it is the soldier, the memory antibody. This is what gets drafted when your dog is exposed to something they have already figured out a response to. When you have a food intolerance, we tend to discuss it in terms of IgG. Symptoms usually begin within a few hours of eating the food that you are intolerant to. Yet, symptoms can be delayed by up to 48 hours and last for hours or even days, making the offending food especially difficult to pinpoint. IgG’s are mostly raised from the barrier mucosa in the digestive system. After a meal, there are both antibodies and complexes of food antigens bound to specific IgG’s. These complexes are quickly cleared by the reticuloendothelial system. Clinical observations suggest that due to gut inflammation and permeability (leaky gut), the digestive system is unable to digest the proteins effectively which subsequently raises IgG response to certain foods. We know that chronic intestinal inflammations and permeability are related to and possibly responsible for food IgG sensitivity. 90% of food reactivity comes from IgG’s. Just to confirm, intolerances can be changeable but allergies tend to be for life and only account for around 10% of food reactivity. IgG’s come in different categories but to keep it simple, they are generally defined as cyclic or fixed. A common IgG reaction is cyclic and can take around 3 months to disappear/change. A fixed Intolerance tends to linger for longer and can take around 6 months to disappear/change. So how do we move forward? We prime and reset the digestive system, and this includes starting with an elimination diet but also gut healing and immune balancing protocols. We follow the 4 R’s. – Remove – carry out an elimination diet. Remove offending foods, one at a time and note changes in symptoms. Quite often, even offending foods can be reintroduced at a later stage. – Repair – support immunity and gut healing with ingredients like slippery elm, de-glycerised liquorice, glutamine, andN-acetyl-glucosamine. It is also important to consider how existing medications are affecting gut healing for example, steroid use impairs intestinal absorption which is linked to several gastrointestinal dysfunctions. But, because of their anti-inflammatory and immunosuppressive activities,
Low Histamine Diets, Why and When!

Would you believe that around 70% of the consultations we carry out here at My Pet Nutritionist are surrounding allergies? The reasons for this are largely multi-factorial and bigger than the scope of one blog article, but as in the words of someone much smarter than us – you’ve got to start somewhere – so we thought we’d explore histamine in a little more detail. What it is, what it does, if indeed it is found in foods and whether there is anything, we can do to reduce the load. So, let’s get cracking. What is histamine? Histamine is a transmitter in the nervous system and a signalling molecule in the gut, skin, and immune system. It is synthesised from the amino acid histidine which is in fact an essential amino acid for humans and dogs. Before we knew better (and in some labs we still don’t), animal studies established that histidine deplete diets result in dog death! Findings here Histamine is primarily associated with the functioning of the immune system. During an immune reaction, histamine is released and contributes to the physical changes necessary for the immune system to fight the pathogen, including the increase in blood pressure, temperature, swelling, and constriction in the lungs. Like all things in the body, histamine needs receptors for it to do its job and there are especially high concentrations of histamine receptors found in the lungs, skin, blood vessels, and gastrointestinal tract. Histamine is stored in granules in mast cells throughout the body and as we know mast cells mediate inflammatory responses such as hypersensitivity and allergic reactions. The granule protects the histamine; if histamine could float freely it would degrade very quickly. Histamine is released from those granules in response to tissue injury resulting from cold, heat, toxins, and trauma. As noted, there are numerous histamine receptors throughout the body. H1 and H2 receptors are of most interest in the hypersensitivity and allergic response (but there are H3 and H4 too). H1 receptor binding results in a range of actions. Peripheral sensory neurons are acted upon which causes itching and sometimes pain. Intestinal smooth muscle is affected causing constriction, cramps and possibly diarrhoea. H1 receptor binding can result in secretory mucosa causing bronchi and nasal mucus. Lastly the pulmonary smooth muscle can be affected resulting in constriction. There are some tissues that have both H1 and H2 receptor binding sites. This includes the cardiovascular system. Histamine binding here drops blood pressure by widening the blood vessels. It also increases heart rate. There are also dermatological effects resulting in increased permeability. This is often described as the triple response resulting in the reddening of the skin, wheal formation and an irregular “halo” flare, also known as hives. H2 receptor binding sites are more commonly seen in the stomach itself. Histamine can bind to parietal cells stimulating the secretion of gastric acid. This is why antihistamine medication is sometimes implicated in digestive dysfunction due to the lower secretion of gastric acid – which is ironic, when partially digested proteins can then become antigenic. H1 receptors are involved in type 1 hypersensitivity reactions (involves immunoglobulin E – IgE – mediated release of antibodies), H2 are involved in Th1 lymphocyte cytokine production, H3 are involved in blood-brain barrier function and H4 are also expressed on mast cells exacerbating histamine and cytokine generation. The long and the short of it, histamine stimulates inflammation and is a prominent contributor to hyper sensitivities and allergic disease (but it is only one of many mediators of allergic disease). Histamine kick starts the processes to get rid of the offending particle/s – whether this is to sneeze pollen from your nose, or to expel food allergens from the gut, but it also plays a role in wakefulness, appetite, and endocrine homeostasis. So, histamine is in fact necessary to maintain homeostasis (balance in the body). But there can be too much of a good thing. Histamine is released to carry out a function and then it is removed by a few different pathways. The enzymes we are particularly interested in are diamine oxidase (DAO) along with histamine-N-methyltransferase (HNMT). DAO inhibition or disruption can result in disproportionate amounts of histamine in the body which can result in a range of GI symptoms along with cardiovascular, respiratory, and skin complaints. Disruption of HNMT function, on the other hand, tends to affect the nervous system. HNMT inactivates histamine by transferring a methyl group, so methylation is a key process in maintaining HNMT activity. Methylation is a relatively simple process, but it occurs billions of times every second! It underlies the proper function of virtually every body system. It is dependent on certain key nutrients like folate in its active form, methyl folate, B12 and B6. There are a number of factors that can affect methylation, from nutrition to genes, but stress and vaccination is a major drain on it. The stress response is a sequence of processes that relies on methylation, depleting key nutrients as it goes. Therefore, if methylation isn’t efficient, HNMT isn’t efficient, and histamine can become imbalanced affecting behaviour, sleep, appetite, immune function and digestion. A range of factors can increase histamine in the body such as infections, B12/folate deficiency, magnesium deficiency, stress, inflammation, trauma and exercise. Not only that but certain gut bacteria produce histamine. DAO and HNMT can become flooded when there is a high histamine load, subsequently affecting breakdown. Histamine load can be increased by the ingestion of high-histamine foods too, but the release of it can also be promoted in the body, by foods we know as liberators. The following list is of foods to avoid if opting for a low-histamine approach to hypersensitivity, whilst getting to the bottom of things. Fermented foods (kefir, sauerkraut etc, prebiotics) Tripe Vinegars (including ACV) Long-stored nuts Beans and pulses Canned foods Citrus fruits Banana Wheat germ Spinach Canned fish (salmon can contain more histamine than most) There is also discussion around yeast behaving as a histamine generating catalyst, so the general rule
Your Puppy’s Microbiome

The Universe inside your Puppy Here at My Pet Nutritionist we always focus on microbrial health, so we delve into it’s importance for your puppy to hopefully set them up for life. Microbes have been around for billions of years, humans – less than a million and we all know there is much disagreement over the domestication of our faithful furry friends. Microbes can multiply in minutes, survive and thrive in every habitat on earth, and technically, they’ve killed more people than all wars combined. But, without them, we actually couldn’t survive. Microbes are like a bad version of Ed Sheeran, you need me, I don’t need you. The body is in fact like a mini ecosystem. It has many different microbial communities throughout the body. They live inside; in the lungs, nose, urinary tract, and digestive tract, but they also live on; they are all over the skin! Because you sadly have jobs that need to get done today, we’re just going to do a whistle stop tour of the three main microbial communities and how we can support them in the puppy. First up, the skin microbiota. Not surprisingly, the skin microbiota plays a role in skin conditions like atopic dermatitis and even some skin cancers. Check out our blog on atopic dermatitis in pets here. In the dog, there are different communities found in different areas of the skin; there are also clear differences in diversity between healthy and allergic dogs. The skin provides one of the first lines of defence in the immune system, but in two ways. Not only does it have its physical structure to keep things in, and things out, but the community of microbes on the skin also protect against potentially harmful pathogens. The good guys can engulf the bad guys before they gain entry into the body, but they can also compete for nutrients and resources, to prevent the bad guys from thriving. In utero, foetal skin is thought to be sterile. But colonisation of microbes occurs during and immediately after birth. As the newborn puppy moves through the birth canal, he is exposed to a variety of bacteria from Mum. Once puppy is born and grooming begins, Mum passes even more over to her offspring. Mum health is therefore imperative – not only for the diversity she possesses but also her emotional health. Stressed Mum’s are less likely to engage in grooming behaviour, so if she isn’t grooming her offspring, she’s not passing her microbes to them. The environment greatly influences the microbiome of the skin. There are noted variations in skin microbial communities between those living rurally and those in urban areas. There is also an increase in chemical use associated with urban living, which also influences the composition of the microbiome. Diversity is significantly reduced with the use of detergents and antibacterial cleaning products. Potentially pathogenic taxa are also increased as there are fewer good guys to keep the bad guys in check. This is why skin issues like acne or dermatitis are deemed western diseases; they simply just aren’t found on the skin of indigenous tribes or on that of individuals from non-industrialised societies. What is also interesting is that there is also a clear distinction between male and female microbiome, therefore suggesting hormonal influences. This poses food for thought in the neutered pet and how their microbiome is subsequently affected. Unnecessary use of antibiotics also affects the skin microbiome, along with excessive use of grooming products and of course nutrition. The Oral Microbiota There is a collection of microbes found in the mouth; these are the ones that result in bad breath or dental issues. Again, they pose a first line of defence against ingested potentially harmful pathogens. But they also play a role in metabolising certain nutrients. It is clear that the oral microbiota found in dogs differs significantly from humans – some researchers have even gone as far as saying that a human bite would be more dangerous than a dog bite in terms of wound infection potential. Findings here The oral microbiota is gaining more attention and for good reason – there are associations between oral microbiota composition and weight gain, much like we have with the gut microbiota. So, caring for the mouth cavity is just as important as caring for the gut, and colonisation, like in the skin occurs at and shortly after birth – and certainly within the teething period! Data is relatively new, but in human realms, to support oral health, the guidelines regularly include avoiding ultra-processed foods along with high-sugar foods (think high-fructose corn syrup found in many dog treats and processed foods). Guidelines also promote dental hygiene –for our puppies and dogs, raw, meaty bones are a great opportunity to support dental health. Remember to choose appropriately sized bones for puppies – soft bones like chicken necks or wings. They must always be raw – cooked bones pose a splinter risk! The Gut Microbiota/Microbiome When we reference the microbiome, we are considering the microbial community found in the whole of the digestive tract. Generally, the further down we go, the more bugs we find. SIBO or small intestinal bacterial overgrow this when there are too many bugs in the small intestine. We want the majority of them in the large intestine. Each puppy and dog have a unique microbiome – just as we do. It’s like a fingerprint. How cool is that? But it just goes to show that if there is dysbiosis (imbalance of good to bad guys) – there is no one silver bullet. For our puppy, we are in a great position to support optimal gut health from the beginning (not withstanding gene interactions). When we talk about the microbiota or microbiome, we are not just talking about bacteria, but fungi and viruses which live inside the gut too. This is totally normal – the good guys with the right tools can keep the bad guys in check. This community can metabolise nutrients (ruminant
5 Basic Tips for Seasonal Allergies

Well, the sun is shining, and the buds are on some of the trees. Whilst it is a great time of year and you feel like anything is possible, it is also the time that seasonal allergies start to rear their ugly head! Whilst many dogs simply have a sensitivity to grass sap and keeping them off the freshly mown lawn for a couple of days can help keep pesky irritation at bay, some allergies are a little more complicated. As always, we are available to help you manage any chronic irritation suffered by your dog, but we thought we would give you some of our top tips that can come in handy when managing seasonal allergies. We love Spring here at My Pet Nutritionist, however we don’t love all of the poor itchy dogs we see due to seasonal allergies. What is an allergy? An allergy is a hypersensitivity with a basis in immune mechanisms. Seasonal allergies tend to manifest as dermatological and respiratory symptoms. Sadly, secondary to dermatological symptoms, dogs can often develop chronic infection from repeated trauma in the form of licking, scratching, or rubbing. Flea allergies are also often deemed as seasonal allergies, and it is the saliva from the flea that causes the irritation. Flea allergies affects animals of all ages, irrespective of sex or breed and there is new data to suggest that puppies given flea protection treatments too early are more susceptible to this disease. It is argued that this is because the young puppy will not be able to acquire immunity to the antigens contained in flea saliva. Findings here For this reason, our first tip is: 1) Avoid the overuse of pharmaceutical flea and worm treatments Whilst there is sometimes a place for the use of pharmaceutical products in high burdens of parasites, we would always advocate the use of worm count kits to establish any burden of worms before treatment and also the use of natural flea repellent products over any spot-on or tablet flea treatment. The overuse of certain pharmaceutical products can place an unusual burden on many pathways in the dog’s body. 2) Support the Gut! As you will know if you read our articles on the immune system and the lymphatic system, in the gut you will find GALT, or gut-associated lymphoid tissue. The digestive tract is heavily laden with lymphocytes, macrophages and other cells that participate in immune responses. As we mentioned, an allergy is an immune response gone bad, so we need to support immune function. In a poor functioning digestive system, rogue particles can end up leaking through the barriers; this can be in cases of periodontal disease (bacteria getting into the blood stream from plaque formation), to damage in the tight junctions in the intestinal tract. But when this happens, the immune response is called to the area of the rogue particle to get rid of it. These systemic responses can lead to hypersensitivity, leaving the immune system a little too eager to do its job on a body wide level. It is essential to support the barriers in the mouth; ensuring good dental hygiene but also to support the barrier of the gut. Bone broth can be a great addition to support gut health. Glutamine is an amino acid that maintains gut barrier integrity and it can be found in bone broth. Read more about gut health here. 3) Limit Stress Mast cells have a key role in allergic response; when they detect a substance that triggers an allergic reaction, they release histamine and other chemicals into the bloodstream. Histamine makes the blood vessels expand and the surrounding skin itchy and swollen. This is known as degranulation and we know that stress can induce mast cell degranulation. Findings here If you are working to tackle allergies in your dog, then it is important to remove as many stress triggers as possible. There is also this idea of co-regulation of species, that dogs can pick up when we are stressed too. We know that seeing our canine companions suffer is worrying, so this is where it can be particularly useful to get a qualified professional on board to help develop a plan of action to move forward. Learn more about how to possibly support stress here. 4) Rinse your dog, but not wash! If you suspect your dog may have sensitivities to certain grasses or pollen, rinse their paws, undercarriage,and chest after walks. You can also wipe their muzzle, ears, and face with a damp microfibre cloth when you get home too. But avoid over-shampooing your dog. Whilst you may opt for non-toxic products, washing can skew the microbiome found on the skin of your dog and this provides a first line of defence for the immune response. The skin has its own community of microbes that can engulf and destroy pesky ones before they have chance to cause problems; frequent bathing can alter this community. 5) Fill up on Fat! As we know, allergies are an immune response and inflammation is the hallmark of an immune response. Therefore, it can help to fill up on foods to down-regulate inflammation. Omega-3 is a fatty acid that has regularly been linked to reduced levels of inflammation. In turn it is often associated with reduced perception of pain (win win!). Omega-3 is found in fatty fish like salmon, mackerel, sprats, and sardines. Fresh or tinned are a great addition to the diet (although be mindful of how much tinned due to mercury content). You will find some content in beef and lamb– just opt for grass fed. There are many fish oil supplements available, just be mindful that as the level of polyunsaturated fatty acids are increased in the diet, the need for Vitamin E also increases. To learn more about your fatty acid options, read here. For some dogs, they can manage seasonal allergies well, with some simple lifestyle changes like: Ensure a fresh diet to give optimal support to your dog’s immunity
Can Genes Result in Poor Skin Function?

The primary two functions of the skin is to act as a protective barrier and an immune barrier, between the body and its external environment, it keeps everything in, and prevents the entry of pathogens and allergens. Here at My Pet Nutritionist, we have heavily focussed on the skin function and allergies so let’s take a look. A defective skin barrier is a key feature of the chronic inflammatory skin disease, atopic dermatitis and it has been noted that the protein filaggrin has a pivotal role in skin barrier function. Mutations with the FLG gene, which encodes filaggrin, strongly predisposes to conditions including atopic dermatitis and secondary allergic diseases. Whilst we always find these revelations in human literature, we have found that this also applies to dogs. So, let’s take a look at filaggrin in a little more detail and how there is a possibility that the skin issues faced by your dog may have a genetic origin. What is Filaggrin The term filaggrin, derived from filament-aggregating protein, was first coined in 1981 to describe a class of structural protein that had been isolated from the stratum corneum (the outermost layer of the epidermis of the skin). Filaggrin is formed from the breakdown of profilaggrin, a protein contained in the granular layer of the upper epidermis. Filaggrin is vital for skin cells to mature properly into the tough, flat corneocytes that form the outermost protective layer of our skin known as the cornified cell envelope (CCE). It does this by binding together the rigid keratin filaments that form a structural skeleton within the cells. As a result, the cells collapse and become flattened. The CCE is constantly renewed by new cells formed in the basal layer of the epidermis. These gradually work their way to the top of the skin layers where they become corneocytes. They will then shed. Surrounding the corneocytes you will find a layer of lipids, which coat the CCE, keeping the skin waterproof, protected and supple. This also provides a protective layer, keeping out irritants and allergens. Without filaggrin, the CCE does not form correctly. Corneocytes dry out, and the lipid layer is lost. This results in dry, cracked skin and a permeability to the skin. Atopic dermatitis is characterised by these symptoms, and data has revealed an association between loss of functions of the filaggrin coding gene and this condition. In short, these conditions are more commonly noted in those with a mutant gene, than those without a mutant gene. What is particularly interesting is that the environment plays a role, not only in developing atopic disease, but also directly in FLG expression. It is regularly noted that exposure to irritants can reduce epidermal FLG levels and lead to an acquired filaggrin deficiency. The FLG deficiency, be it genetically determined or acquired, causes an altered epidermal structure and an impaired barrier function. Sadly, this allows penetration of environmental allergens into the skin, including house dust mites, pollen, bacteria, irritants, and toxicants but it also results in sensitisation of the host. The resultant alteration of the epidermis by way of increased pH, altered lipid secretion, modification of keratinocytes and reduction of antimicrobial peptides also then paves the way for the perfect environment for other bacteria and fungi to thrive, leading to recurrent skin infections, which you’ll have likely observed in cases of canine atopic dermatitis. Environmental and Inflammatory Factors known to alter the amount of Filaggrin: Humidity It seems there is a correlation between indoor humidity and disease severity. In human studies, in those children with atopic dermatitis and FLG mutations, their skin lesions are more often located in air-exposed skin areas. Interestingly, children with atopic disease experience a reduction in disease severity after one month spent in a humid climate. It seems that filaggrin and more filaggrin proteolysis is required in a dryer environment and for that reason, it is often concluded that children predisposed to atopic dermatitis should be encouraged to increase their indoor humidity. Findings here Mechanical damage Mechanical damage includes stretching, compression, and friction on skin cells. It not only affects the barrier function of the skin but also induces various immune responses, triggering inflammation at the site of the stress on the skin. For example, scratching of itchy lesions exacerbates the skin inflammation in atopic dermatitis. This increase in inflammatory mediators has been seen to down regulate filaggrin expression. Skin Irritants Studies have demonstrated that profilaggrin expression can be down regulated after application of experimental sodium lauryl sulphate (SLS). In the 6 hours post exposure, it was noted that SLS in fact induced skin barrier defects. Findings here SLS is what’s known as a surfactant. This means it lowers the surface tension between ingredients, which is why it’s used as a cleansing and foaming agent. You will find SLS in a range of human products and may find it in some dog grooming products. It is generally what makes them foam. Human Products: Hand sanitiser Makeup remover Liquid hand soap Shampoo Conditioner Styling gel Bubble baths Dental care products like toothpaste Anti-itch creams Sunscreen You may also find it as a food additive in certain products, it is used to mix acids with other liquids, or as an emulsifier or thickener. Dog Grooming Products: Shampoo Conditioner Detangler Conditioning balms Deodorising sprays Cologne It is also worth noting that some shampoos specifically prescribed or advertised for use in atopic disease also contain SLS, amongst other ingredients. The issue is that when products reduce filaggrin expression, it disrupts the skin barrier, making it permeable to other toxicants and irritants, creating a vicious cycle. What you choose to apply to your dog’s coat and skin is just as important as what you put into their body through their diet. Not only that, but whilst you may not be applying human products directly to your dog, they may come into contact with them through exposure to soft furnishings or you. In the hopes to create a mechanical barrier, without harsh chemicals being used, there are certain topical products
Why Is My Dog A Fussy Eater?

Any quick search on the internet will populate a range of breeds that are seemingly notorious for being fussy eaters. If you have a basenji, husky or yorkie, it looks like you’re signed up for a lifetime of stressful meals. Except here at My Pet Nutritionist, we don’t believe everything we read on the internet. Whilst all those breeds could indeed be fussy eaters, so can many more. And they are. It is perhaps one of the more common questions we are asked, “how can I get my dog to eat?” Being a fussy eater can be technically defined as an eating disorder, and there are a number of causes. From behavioural to biochemical, let’s take a look at the complex world of the fussy eater. The Function of Eating Food components are the main sources of energy for the canine body. Not only that, but it provides the compounds needed for each cell to do its job. As the body carries out its tasks, it uses fuel and compounds, as reserves run low, signals bounce around the body to kickstart feeding behaviour. This is hunger, a physical need to eat. Appetite is quite simply the desire to eat. Hunger and appetite can be at odds. You may want to eat, but not need to, and you may need to eat, but not want to (in times of stress for example). Appetite and hunger are largely controlled by the brain and a range of hormones. The Brain In the brain sits the hypothalamus. Through its connection to the pituitary gland, it modulates the endocrine system. It is involved in a range of daily activities including temperature regulation and energy maintenance. We know it plays a role in eating behaviour as several lesions to small areas of it can result in overeating and under eating. The lateral hypothalamus is defined as the feeding centre and the ventromedial hypothalamus is defined as the satiety centre. This is largely an oversimplification, but it certainly demonstrates the role. The hypothalamus receives information from the digestive system like stomach extension, chemical nature of ingested food and the metabolic activity of the liver and uses it to maintain energy balance. It also receives information from the emotion/reward system. Food is a rewarding object that induces pleasant emotions. Findings here The amygdala is largely responsible for this. Studies have demonstrated that when the reward value of food decreases, so too does eating motivation. Sadly, these studies often include the injection of lithium after eating, of which causes discomfort. But it does raise an interesting point in terms of the fussy eater in your life. We’ll revisit this later. Food reward is elicited by several events that occur before it even passes through the oesophagus, namingly the appearance and shape of the food, the taste and smell and then the pleasure of swallowing the food. We know this because in tube-feeding studies, reward sensations are reduced. In short, when subjects were no longer allowed to taste or chew it, they did not want to eat it. That said, in sham studies, when animals are denied nutrition because everything swallowed leaks out of a tube connected to the oesophagus, they eat and swallow more than usual, but they are still unsatiated. This tells us just how complex eating behaviour actually is. And provides food for thought for the gluttonous dog (on the other side of the scale). Hormones Hormones are probably the most talked about in terms of eating behaviour. You’ve all likely come across leptin and ghrelin. Leptin is produced in adipose cells, or fat cells. So, the more fat cells there are,the more leptin. In short, the more fat available in reserves, the less you need to eat. If you have no fat cells, you need to conserve your energy until you next find food. Leptin crosses the blood-brain barrier, and there are high numbers of leptin receptors found in the hypothalamus, brain stem and other regions of the brain. Rising leptin in a fed state inhibits food intake by suppressing a range of peptides involved in eating behaviour. Ghrelin is predominantly secreted in the stomach and it too modulates cells found in the hypothalamus by increasing excitatory inputs and decreasing inhibitory inputs. Here we are talking about neurotransmitters. These chemical messengers modulate much of our and our pet’s behaviour and they either make something do something or stop something from doing something. Whilst dopamine can be both inhibitory and excitatory, ghrelin is seen to have a large influence on the release of dopamine via increases in cell excitability. As dopamine is involved in reward and motivation, ghrelin is thought to target the motivational functions geared to gaining food and to select those which are more rewarding (high calorie). Findings here In eating disorders, dopamine is one of the neurotransmitters that gets a lot of attention. In times of reduced food intake (fussy eating), dopamine neurons are activated, in the short-term rewarding the lack of food. It is considered that it is a physiological response in an attempt to increase motivation to forage for food. Findings here However, there are also other mechanisms in which the dopaminergic system comes into play for the fussy eater. A central feature of the dopamine neuron response is that it is triggered by unexpectancy. After receiving an unexpected reward like food (or how many likes our recent post has got on social media) a dopamine surge is elicited. When this becomes a regular occurrence, the dopamine signal is triggered by the conditioned stimulus in predicting the reward. However, the dopamine system does not respond when the reward is received. If the reward is predicted, then not received, there is a dip in dopamine activity. What this means, is that your dog may do the song and dance ready for their bowl of food, but then walk a way as soon as it is placed in front of them. The reward they predicted (tasty food), isn’t what was received. The other neurotransmitter that gets a
Why Does My Dog Keep Licking?

If you’ve just rinsed your dog off after a meander through the woods, then their licking is likely grooming behaviour. But, here at My Pet Nutritionist, we often see dogs who excessively lick causing abrasions and hair loss. Whilst it’s often indicative of an irritation, there are in fact some other reasons why your dog may start licking in the absence of a jaunt through a muddy puddle. Let’s take a look at some of the more common causes. 1) Stress Yes – stress can take the blame for this one too! Stress is like the wonder woman of life – is there anything she can’t do? For anyone who has spent time investigating dog behaviour, you’ll know that lip licking in particular is a sign of stress. An interesting theory here suggests that because stress depletes essential nutrient resources, lip licking is in fact a sign of malnutrition. Deficiencies in a range of nutrients like vitamin B2, B3, B12, iron, and Vitamins A, C and K and Zinc have all been known to cause irritation and inflammation in and around the mouth and lips. The licking is thought to be an attempt to soothe it. Findings here However, other suggestions explore the idea that the lip licking mechanism is thought to soothe the stress response by activating the parasympathetic nervous system. Yet, this mechanism can apply to licking of all body parts, not just the lips. The stress response is dominated by the sympathetic nervous system; it increases heart rate, widens eyes in order to assess the threat better and redirects resources in order to deal with it. Once the threat has passed, the parasympathetic nervous system kicks in and re-balances. The chief of the parasympathetic nervous system is the vagus nerve, and chewing, along with licking is considered to activate it. Through the action, attention is redirected and focussed on that particular task, not what is making them stressed. Findings here Licking is also deemed a self-soothing behaviour through its association with oxytocin. Oxytocin is a hypothalamic nonapeptide linked to increased levels of social interaction, well-being and anti-stress effects. Oxytocin is released by sensory stimulation (touch) and promotes the release of dopamine whilst decreasing the cascade of stress response mechanisms throughout the brain and body. Oxytocin also modulates the activity of serotonin which as we know is a key hormone in mood stability, feelings of well-being and reward. An element of this could have also been learned behaviour from their mother. Licking and grooming behaviour is a key feature in determining neural changes and fear responses in offspring. Those from low licking mothers tend to show a greater stress-response and proceeded to be low-lickers themselves (if they were female and had their own litter). The same also occurred for high lickers. Findings here The bottom line? Excessive licking could be a response to stress faced by your dog. Watch out for other signs of stress like: Panting in the absence of exercise Salivating in the absence of food Pacing Inappropriate toiletting Unusual vocalising Out of character behaviour Wide eyes Flat ears Abnormal tail placement Work to remove the trigger and support them with other stress reduction strategies. Also, be mindful that chronic stress can deplete essential nutrient resources. our Calm Complex can help support the above signs of stress. 2) Pain Pain is an uncomfortable feeling that gives us and our dogs an indication that something isn’t as it should. Not only are many breeds incredible at hiding pain (it wouldn’t have helped them in evolutionary terms), but they also lack the ability to converse. Whilst we would all love to think we have this form of communication with our dogs, we can miss things, especially if they are pretty crafty at hiding them! The sensation of pain is a necessary function that warns the body of potential or actual injury. Whilst we may think that dull ache in our lower backs is merely an inconvenience, it’s a rather reliable indication that our office chair possibly doesn’t suit us. Pain occurs when a nociceptor fibre detects a painful stimulus on the skin or in an internal organ. This detection is picked up by other receptors in the spinal cord and brainstem and then transmitted to the various areas of the brain. This is done through the incredible work of neurotransmitters. There exists both inhibitory and excitatory neurotransmitters. Those that make things happen, and those that apply the brakes. Inhibitory neurotransmitters are involved in the modulation of pain; including enkephalins and endorphins, serotonin, noradrenalin, GABA, acetylcholine and oxytocin. Excitatory neurotransmitters acting without an inhibiting system results in pain. Which is why pain killers primarily prevent the release of some excitatory neurotransmitters (and can in fact make you or your dog drowsy). When we look at the neurotransmitters involved, it’s possible to see why our dogs may start licking an area that is painful to them. Through touch they can stimulate the release of oxytocin (a modulator of pain). Not only that but self-trauma (excessive licking) is thought to promote the release of endorphins, which are also pain modulators. Findings here This demonstrates how dogs can get into a vicious cycle, they want to lick to soothe, but the more they lick, the more trauma they cause, resulting in more licking. There is also the possibility, that what could have started as a pain response, could turn into irritation, or what started as irritation, could turn into pain and continue the cycle. 3) Itch Itch is a sensation felt on the skin, which causes the desire to scratch. Although initially it could be as simply as scratching something to remove it, itching can become stressful when excessive. When tissues are stimulated by allergens, histamine is released from mast cells. Histamine makes the blood vessels expand, driving blood to the area creating that common swelling among other responses. Specialised nerve fibres are stimulated; when these are processed, the scratching or rubbing reflex is stimulated. The main mediators for the itch
5 Reasons Why Your Dog May Have Diarrhoea

Help! My dog has a loose stool! Well, you wouldn’t be a true dog owner if you didn’t spend time assessing, talking or even sharing photos about your dog’s bowel movements. Here at My Pet Nutritionist, we’re not averse to a poop pic (we get quite a few in a day), but there are some common reasons why your dog may develop high scores on the Bristol Stool Chart. Technically that’s a chart for humans, but we can learn similar lessons. Here is our Ultimate Dog Stool Guide on colour and consistency. So, let us take a look at some of causes of runny poops in dogs. 1) Infection It goes without saying that a nasty gastro bug can result in runny stools. It can be all sorts of different colours, but more often that not it can be described as like turning a tap on! Infections can be a result of bacteria, parasites or virus and you may notice other symptoms like lethargy, vomiting or abdominal pain. In some cases, due to the irritation in the gastrointestinal tract, you may find specks of blood in the stool too. If nothing sinister, a fast followed by a bland diet will start to show improvements, but if there are other clinical signs or no improvements then its always best to get your dog checked out by your Vet. A vet call is always warranted for young puppies or elderly dogs. 2) Gut Dysbiosis Stool consistency strongly correlates with all known major microbiome markers. What this means is good poops are a sign of a healthy gut. But you knew that! Gut dysbiosis is when there is an imbalance between the good and bad bugs found in the gut. This can be for a number of reasons: Antibiotic use Steroid use Diet diversity Environment – exposure to toxins Birth method Use of flea and wormer treatments Vaccination When we are looking to heal the gut, we follow the 4 R’s. Remove (food antigens that could cause reactivity) Repair (the gut lining/endothelial, possibly known as leaky gut) Restore (the good bacteria in the gut) Replenish (with enzymes if necessary to reduce immediate inflammation) Signs of gut dysbiosis will usually manifest as regular sub-optimal bowel movements, if you think they may be an issue faced by your pet, we are more than happy to help! 3) Food Sensitivities/Allergies Allergies are in fact incredibly rare (at around 10%), but sensitivities are one of the most common issues discussed here at My Pet Nutritionist. An allergy is the result of an over-zealous immune system. It’s like going for the theory part of your driver’s test when you are told you are limited with how many clicks you can make on your hazard perception. Well, in cases of an allergy, the immune system didn’t get the limited clicks memo and gets a little trigger happy! The basic function of the immune system is to get rid of potential threats; it can do this by engulfing parasites, and you guessed it, causing a swift exit in the form of diarrhoea. But diarrhoea is also a sign of a food intolerance. Rather than an immune response per se, an intolerance involves the digestive system; in short, it struggles to process a particular food. This can be due to a lack of enzymes to digest a particular food, a sensitivity to chemicals found in certain foods or health issues like irritable bowel syndrome (which is often linked to bacterial overgrowth, stress, post-infection and genetics). In cases of food sensitivities, an elimination diet is the first port of call, to establish the key offender and we again follow the 4R’s in gut healing. 4) Stress Our pet’s stress response is much like ours as a human. Eustress or good stress can improve alertness and motivation and provide a helping hand in performance. But distress is the one we need to worry about, especially if it becomes chronic. Stress is generally known as the fight or flight response. The cascade of changes occurring in the body redistribute resources; blood is directed to the brain and limbs to figure out what to do, and whether to run away or stand and fight. Despite us making evolutionary progress, neither us or our dogs have yet evolved past this response and so even potentially minute stressors result in this redistribution of resources; taking ours and our dog’s ability to effectively digest food with it. Digestive function returns when the parasympathetic system kicks back in; once the stressor has passed (but incases of chronic stress, this doesn’t occur). In times of chronic stress, food is ingested, but not digested properly. This also explains why you may notice your dog has “adrenaline” poops on walks, or when they get particularly excited. As they are doing their zoomies, the body interprets it as stress and so directs resources where they are needed (not to the effective digestion of food). This is short lived and the dog’s next poop that evening has usually returned to its normal presentation but, under long term stress, this lack of digestion demonstrated by recurring loose stools, can result in a range of health issues thanks to the malabsorption of nutrients. If you consider your dog’s loose stools are generally associated with certain stressful events, the key is to remove the trigger where possible. Counter conditioning is often successful in supporting their future stress-responses. Stress does deplete essential nutrients, so opting for a fresh-food diet with excellent bioavailability is vital in supporting your dog during these times. 5) Underlying Malfunction Loose stools are the result of food being passed through the colon too quickly; with less fluid being absorbed by the body, the result being that puddle in your garden. As we mentioned earlier, a lack of digestive enzymes can be a reason for this. The digestive system comprises the GI tract, pancreas, liver, and gallbladder. If there is an underlying malfunction in any of these, you may find abnormal stools. The pancreas