Glyphosate and My Dog

One of the most popular herbicides in the world, it was first patented by Monsanto in 1974. Since then, glyphosate tolerant genetically modified crops were commercialised, paving the way for its increasing use, year on year. Here at My Pet Nutritionist, this makes our stomachs churn a little, and we’ll let you know why. What is Glyphosate? Glyphosate is a systemic, broad-spectrum herbicide. This means that it moves throughout the plant, and kills any plant not genetically modified to resist it. Glyphosate is a strong chelating agent; it creates complexes that immobilise the mineral micronutrients of the soil (calcium, iron,magnesium, manganese, nickel, zinc) making them unavailable to plants. It also acts as a powerful antibiotic – killing all bacteria in the soil. Due to its antibacterial properties, glyphosate has been reported to affect the gut microbiota of animals, killing the beneficial bacteria and leaving the pathogenic ones behind. This has been linked to adverse effects in farm animals, which feed on glyphosate-treated soya and corn feed. For more information on the importance of a diverse microbiome, checkout our blogs: Here Here Here Glyphosate and Health The International Agency for Research on Cancer (IARC) of the World Health Organisation (WHO), classified glyphosate as a “probable human carcinogen”, following a thorough analysis performed by 17 independent world leading experts from 11 countries using only publicly available studies. The conclusion on experimental animals was based on two experiments where mice had developed malignant tumours as a result of exposure to glyphosate alone. Findings Here. Glyphosate and Hormone Glyphosate alone and glyphosate-based products alter the hormone metabolism in different mammalian cell lines and have been reported to reduce the conversion of androgens to oestrogens (resulting in production of more male than female hormones). In experimental studies with mice, glyphosate-based products also alter the reproductive hormone metabolism and reduce fertility. Findings Here. Glyphosate, Growth and Development Experimental animals exposed to glyphosate have given birth to foetuses with increased heart malformations and abnormalities, absent kidneys, distorted ribs, lungs and skeleton, as well as embryonic deaths. Findings Here. Glyphosate and the Nervous System Glyphosate and glyphosate-based products have been seen to affect the growth and development of nerve cells also. Glyphosate has been reported to disrupt the function of brain nerve signalling, brain cell organelles (mitochondria) and cause neuronal cell death. Findings Here. Whilst these all offer food for thought; we’re going to focus on cancer research a little further. When concluding that it is a probable human carcinogen,researchers took into consideration the strong evidence of genotoxicity (DNA damage) and oxidative stress (tissue/cell damage) in humans and laboratory animals following exposure to glyphosate-pesticides and its metabolites. As we know, the first step to cells becoming cancerous is unusual DNA (deoxyribonucleic acid) structure. DNA contains the instructions that ours and our dog’s cells need to develop, live, and reproduce. These instructions are passed down from parents to their offspring. Every cell must undergo growth, and then it must die. Cancer cells on the other hand receive aberrant instructions. Of interest here is the concept that these instructions are passed down from parents to their offspring, and in relation to glyphosate, it has been established as genotoxic. Here, you not only have to consider your dog’s exposure to the product, but that the damage could be seen in future generations, and equally, your dog could be experiencing health issues because of their parent’s exposure. This is of particular concern when a study highlighted glyphosate has been found in several commercial cat and dog foods on the market. Findings Here. As it is sprayed on many crops, and most commercial foods are crop based, this is of little surprise. Glyphosate has been implicated in the disruption of proteins crucial to detoxification pathways; it affects the host’s ability to remove other environmental chemicals, causing them to be more nephrotoxic than they would otherwise be. This is why, many reviews are now linking glyphosate to kidney disease of unknown origin and non-alcoholic fatty liver disease. Findings Here. Again, this is a worry if these modifications can be passed from generation to generation. Are dogs becoming less efficient at removing environmental chemicals, in a world where we have never had more? We don’t know the answer to that question, but its certainly worth considering. If you would like to learn more about detoxification pathways and toxins found in the home, check out our blogs: Here Here Here How much are us and our pets actually exposed to? Many laboratory tests have demonstrated the possible absorption of glyphosate in the gastro-intestinal tract of humans and mammals, as well as absorption through inhalation, ingestion, and dermal contact. In 2012 the German magazine Oko-Test found traces of glyphosate in wheat flour, oats, and bread in 14 samples out of 20 analysed. In 2014 the Moms Across America group and the SustainablePulse information website reported the presence of glyphosate in human milk in 3 out of 10 samples. In 2015, the National University of La Plata in Argentinadetected traces of glyphosate in 85% of the sample tampons purchased in supermarkets and all analysed samples of medical gauze and cotton. In 2016, research conducted by Boston University and AbraxisLLC revealed the herbicide’s presence in 62% of conventional honeys and in 45% of organic honeys. In 2016, another two studies conducted by the Munich Institute of the Environment and the Consumer Magazine 60 Millions de Consommateurs, found traces of glyphosate in 14 beers, among the best known in Germany (Beck’s, Paulaner, Warsteiner, etc.) and in panty liners from the feminine hygiene company Organyc. In Italy, 100 food products based on flour and 26 samples of drinking water were analysed by the magazine Test-Salvagente, they found traces of glyphosate in half of the food and in two samples of water. Findings Here. The fact that it finds its way into so many different products really shines a light on how we need to pay attention to everything we are exposed to or expose our pets to – including their
Why We Don’t Advocate Spot Ons!

Here at My Pet Nutritionist, we often track many health concerns back to the administration of flea and tick treatments. Whilst correlation is not causation, there is still a correlation. So let’s take a look at how they work and see if we can understand why we don’t recommend them. Grab a cuppa, and sit tight! Permethrin, discovered in 1973, is predominantly administered as a spot-on formulation but has also been formulated in collars. A bit wordy but, permethrin works after contact with the arthropod and absorption into the arthropod either directly through the outer cuticle or through ingestion during feeding on the host. Permethrin is distributed throughout the arthropod nervous system. As this occurs, it interferes with the voltage-gated sodium channels of neurons by slowing down the activation and inactivation process of the sodium channel gates and significantly prolonging sodium ion influx. What this means is that it causes continuous nerve charges, resulting in restlessness, incoordination, tremor, paralysis, respiratory failure, and eventually arthropod death. It acts on the nervous system of the flea to kill it. Permethrin is touted for its fast metabolism in dogs – but cats lack the same enzyme necessary for this process, so any cats that are in contact with dogs who have been treated often show signs of toxicity – hypersalivation, motility disorders, lameness and in some cases death. Check out our article on cat detoxification here. Flea repellence is difficult to appropriately define and measure because fleas attack and bite so rapidly after arriving on the host – for this reason, it is claimed that products like this are designed to reduce flea numbers in the household, rather than to prevent new fleas from taking a bite. Fluralaner is a novel, recently developed chewable tablet, and a molecule of the isoxazoline class. Isoxazolines block the ligand-gated chloride channels of both GABA and glutamate receptors (and as we know these are chemical messengers in the nervous system). After oral administration and absorption int he digestive tract or topical administration and transdermal absorption, fluralaner is rapidly distributed by the circulatory system and maximum plasma levels are on average reached within 24 h after oral or approximately 7 days after topical administration in dogs. This compound has a slow-clearance rate in the body. Fluralaner is a systemically distributed anti-parasitic agent and, by definition, is not a repellent. The reason these products are used is to mitigate the risk of tick-borne disease is to disable the critter when they have latched on to your dog but a review carried out on the efficacy of flea and tick products concluded that there are no currently available acaricidal treatment that can completely prevent transmission of tick-borne diseases. Findings here The other reason these products are used is often if there are known allergies to fleas. But as these products don’t repel, you still run the risk of contact whilst the flea is being killed from ingesting the toxic compound. So, if these products don’t repel, is there anything we can do that can? 1) Start in the Garden! Plant pots of lemon balm, sage, rosemary, lemongrass, basil, and mint! These aromas are great for repelling those pesky fleas! Lemon balm, or Melissa officinalis L., grows natively in West Asia,North Africa, and parts of Europe. As the name suggests, lemon balm has a lemony scent and flavour. And whilst you’re growing some, you may as well note the additional benefits: Antiviral Antispasmodic Improve cognitive function Promote digestion and mitigate griping pains Antioxidant Hepatoprotective Immunomodulatory Findings here 2) Apple Cider Vinegar! ACV can be added to water to support gut health in the dog, but it can also be used as a coat rinse – the smell is particularly repellent, to most! Never use neat, always dilute with filtered water. 3) Neem! Neem has a range of functions including: Fungicide – effective in cases of ringworm, yeast overgrowth and many more fungi species Antibacterial – neem has effectively suppressed several species of pathogenic bacteria Antiviral Insecticidal Controlling intestinal worms Findings here 4) Mint! Not just a breath freshener, it also repels pesky visitors. However, peppermint has been seen to possess the following benefits too: Antibacterial: Peppermint has demonstrated antimicrobial effects against a range of nasties, including:e.coli, salmonella, streptococcus, staphylococcus, Enterobacter and more! Attention is being paid to its role against multi drug resistance bacteria. Antifungal: Peppermint ha sbeen seen to have good fungicidal action against candida, and dermatophytic fungi. Findings here The reason we have considered additional benefits of these herbs is because worse outcomes are usually associated with a poorly functioning system – and so, in repelling nasties, and mitigating the risk of a burden, it is essential to take a whole health approach to parasite control. Ironically, the very administration of some of these treatments is often associated with a subsequently poorly functioning system. Reviews have even concluded that there is strong evidence that products not only target fleas and ticks but they compromise the health of the non-target species, in this case, the dog. Findings here And so, the single best thing we can do to support the overall health of our pets is provide a fresh, whole-food diet, use natural repellants, to find out more, click here. The body has cells, which have jobs to do. To do those jobs, they need nutrients, and whilst some nutrients can be synthesised in the body, many are ingested through the diet. Ensure the diet is full of bioavailable protein, fat, and a range of micronutrients. In order to fight any nasties that appear, a strong immune system is key, check out our article here to learn more about the function of the immune system here and for some top foods to help support it here. If you are concerned that any treatment you have administered has compromised your dog’s system, as the above review highlights, then check out our article on detoxification here and also ensure you are supporting their gut health here. If you would like any support with your dog’s health,
Why is My Dog Licking His Lips?

Whilst we often reference lip licking in anticipation food, there are a number of reasons why dogs especially, may demonstrate this behaviour. Some may even surprise you. So, let’s take a look at some of the more common reasons for lip smacking, or licking, that we see here at My Pet Nutritionist. 1) Anticipation of Food! We can head back to Pavlov and his dogs to put this behaviour into context. Most of us are familiar with the concept of conditioning that Pavlov introduced – he paired a bell with food, and eventually, the dogs would salivate in anticipation of the food, just by hearing the bell. This increase in salivation will encourage lip licking to help manage the extra fluid in the mouth! But what is also interesting is that food also stimulates the reward system in the brain – and the physical response to this type of reward is often saliva – again, the lip licking is a mechanism to manage the extra fluid in the mouth. 2) Lip Licking in response to stress! Not surprisingly, stress can result in hypo (too little) and hyper (too much) salivation! Either way, lip licking is often the result. On the one side, activation of the sympathetic nervous system (fight or flight), redirects resources and in doing so, digestive functions are sacrificed. As saliva is an important part of the digestive process, production is therefore reduced. The resulting dry mouth can encourage lip licking behaviour. Licking is also a maternal behaviour – they would clean and groom their offspring, soothing them during the action. Many dogs demonstrate licking behaviour because it elicits positive responses. It is well demonstrated that those born to Mothers who engaged in grooming/licking behaviour, are more resilient to stress, and develop more appropriate coping mechanisms. Findings here That said, increased salivation can be implicated in certain health issues that are exacerbated by stress – here salivation may be a side effect of an underlying issue, like acid reflux. 3) Acid Reflux Acid reflux is where stomach acid ends up somewhere it shouldn’t. As we know, the body is pretty nifty and has a few tricks up it’s sleeve to deal with rogue compounds. In response to the irritant in the oesophagus (stomach acid), salivary glands can over produce in an attempt to neutralise it. Ironically, acid reflux can be a result of reduced salivary production in the first place. There are a number of causes of acid reflux, poor lower sphincter functioning, abnormal oesophageal clearance, altered mucosal resistance and delayed gastric emptying (which is why it can be implicated alongside stress). If you would like more information about tackling acid reflux, then check out our blog here. 4) To smell better! Dogs use their tongues to enhance their sense of smell. When they lick a surface their transfer molecules via their tongue to olfactory receptors and then to the vomero nasal organ. When a dog keeps their nose wet, they are lowering the surface tension of the scent molecules so they can be translated better! Dogs are incredible at detecting minute traces in their environment – this also applies to information from us humans. We must consider whether our dog is attempting to gain more information about those around him when he is licking his lips. 5) Gastrointestinal Disorder Lip licking is often paired with nausea,along with excess salivation, lack of appetite, increased swallowing and lethargy. For this reason, it is often considered that lip licking is more likely associated with some gastrointestinal disorder or discomfort. One particular study sought to investigate this. Dogs demonstrating excessive licking behaviour were studied. In 14 of 19 licking dogs, gastrointestinal abnormalities were noted. They included: Delayed gastric emptying Irritable bowel syndrome/disease Food intolerances or allergies Pancreatitis Gastric foreign body Giardia Researchers concluded that full gastric health should be considered in any dog presenting with excessive licking behaviour. Findings here If you would like a head start on supporting your dog’s digestive health, then check out our blogs here: The Dog’s Digestive System 7 Steps to Optimal Gut Health for Your Pet Natural Guide for Pets IBD Pancreatitis and a Natural Nutrition Regime 6) Disorders of the Mout Gum disease is an inflammatory condition,symptoms include bad breath, drooling along with mouth and tongue inflammation. Sadly, bacteria can be translocated from the mouth into the rest of the body, often causing secondary infections and issues. For more information on dental care for your dog check out our blog here. But disorders of the mouth aren’t limited to periodontal disease. They can also include lip disorders found in those breeds with dropping upper lips and lower lip folds (like spaniels,bulldogs and St. Bernards). The lips accumulate moisture, becoming the perfect breeding ground for harmful bacteria. The lip folds can become fowl-smelling,inflamed, uncomfortable and swollen, resulting in your dog licking them to try to soothe them. Keeping these folds is therefore essential to your dog’s health! As is supporting their skin and oral microbiome. Please check out blog on puppy microbiome here. Your dog can also develop lip wounds – from a rogue branch or grass seed that has gotten wedged. If you are concerned about your dog’s lip licking behaviour – checking in their mouth is a good place to start. These are the more common reasons why your dog may be licking their lips, but they are not the only ones. Your dog may lip his lips for any one of the following reasons: Medication side effect Infectious disease Car sickness Reluctance to swallow (irritation/blockage) Inflamed tonsils Structural defects in the mouth Metabolic disorder (liver or kidney issues), Natural Guide To Liver Disease and Natural Nutrition Guide to Kidney Disease. Abscess. Disorder/blockage of the salivary glands Pain Whilst we can’t change the structure of your dog’s mouth, we have a wealth of experience tackling gastrointestinal disorders in the canine. If you are concerned about excessive lip licking in your dog and are wondering where to start, check out our services to see
Parasites and What You Really Need to Know

Whilst not our general remit, here at My Pet Nutritionist, we often see the longer-term impact of infection or infestation of certain parasites in dogs. We can often trace digestive discomfort to parasite treatment protocols too! For that reason, we thought we’d explore parasites in a little more detail. Parasites can be endo or ecto. The difference is their habitat. Endo = lives inside the host Ecto = lives on the surface, outside of the host. Ectoparasites The most common ectoparasites include ticks, mites, fleas, lice, mosquitoes, and flies. We are interested in them because: They may cause cutaneous lesions which may lead to secondary bacterial or fungal infections and various kinds of dermatitis, They can induce immunopathological responses, especially allergic reactions, with flea allergic dermatitis (FAD)being the most important They can transmit pathogens They may be zoonotic or transmit zoonotic infections Their control is part of maintaining healthy pets – he direct health implications of ectoparasite infestation can be more than skin deep, for example heavy blood sucking arthropods can cause anaemia. Fleas In Europe the most common flea species found on dogs, cats and on other small mammalian companion animals are Ctenocephalidesfelis, followed by C. canis, Archaeopsylla erinacei (hedgehog flea), and occasionally other flea species such as Ceratophyllus gallinae, Echidnophagagallinacea (poultry fleas), Spilopsyllus cuniculi (rabbit flea) and Pulexirritans (human flea). Fleas are 1–6 mm long, flattened wingless insects, with robust hind legs enabling jumping and possess a mouth adapted for piercing skin and sucking blood. Once emerged from the pupa, adult male and female fleas start to actively seek a host. In the absence of a host, they can only survive for a few days. After the first blood meal, they need daily blood meals for survival and usually remain on the same host for the remainder of their life. Maximal recorded longevity is 160 days, but most fleas survive for about one to three weeks as they are groomed out by the host. Non-allergic animals may have few or no clinical signs and only show occasional scratching due to irritation caused by fleas or their bites. Animals that are allergic or develop an immunological reaction to flea saliva, show pruritus, alopecia, broken hairs, and scabs with crusts. Moist dermatitis may also be seen. In chronic cases, the skin shows thickening and hyperkeratosis. In young, old, or sick animals, heavy infestations with a large number of fleas can cause anaemia. Infection with tapeworm can be an indication of a current or recent flea infestation. Ticks Female ticks can increase their weight up to 120 times as they engorge with blood; when fully engorged they can measure around one centimetre in length and resembles a small bean. Ticks spend a variable time on their hosts;in some species, each stage feeds for only a short period of one to two weeks.Generally, ticks are seen as vectors of bacteria, viruses, protozoa and nematodes affecting both companion animals and humans. Infections can be transmitted in saliva as the ticks feed or, more rarely, after the tick is ingested. Generally, tick infestation is highly seasonal; in the UK and central Europe there are typically two peaks, one inMarch to June and a second in August to November. Ticks can be found all over the body but the main sites are the non-hairy and thin-skinned areas such as the face, ears,between the toes and perianal regions. Removal of blood, in heavy infestations and under certain circumstances, may lead to anaemia. The wound caused by a tick bite may also become infected especially if the if the tick is forcibly removed and the mouth parts remain in the skin. Attached engorging female ticks, which can measure 1 cm in length, are easy to see. The main concern of ticks is their role as vectors of pathogenic agents which cause a range of tick-borne diseases. Demodectic Mange Mites Female mites are up to 0.3 mm long, males up to 0.25 mm. Demodex mites in dogs are considered a normal community found in the skin and are seen in small numbers on many dogs without any clinical signs. They spend their entire life in the lumen of hair follicles, but in heavy infestations, they invade the sebaceous glands. Demodex mites are unable to survive away from their hosts. Demodectic mange caused by D. canisis a common skin disease in dogs. Newborn puppies usually acquire mites fromtheir mothers via direct skin contact during nursing, and so the first sites ofinfestation are the upper lip, eyelids, nose, forehead and ears. Over time, mites colonise the skin overmost of the body. Demodex spp. don’t infest other animal species(including humans) and although transmission of mites may occur during directcontact between older animals, the disease is not considered to be contagioussince most animals that develop demodicosis are thought to suffer from anunderlying condition or a genetic defect that compromises their immune systems. Endoparasites When we look at endoparasites, we are generally considering some type of worm. Roundworm Toxocara canis and toxascaris leonine are two species of roundworm that are known to affect dogs. Both are long, white and spaghetti-like in appearance and absorb nutrients from the infected dog. Roundworm larvae will initially infect adog’s intestinal tract but can burrow their way into other bodily tissues and organs. As the larvae mature, they will move onto the lungs to develop, then upto the airway before being coughed up and swallowed again, re-entering the intestine to complete their lifecycle. Toxascaris leonina however, do not move around the body and have a far simpler lifecycle. Tapeworm Tapeworms are flat, segmented little creatures. They belong to the cestode familyof intestinal worms. The tapeworm uses its hook-like mouth parts to attach to the wall of the small intestine. The adult worms may reach 30 cm in length. As the adult matures, individual segments, called proglottids, are passed in the faeces of an infected dog. The proglottids are about 12 mm long and about 3mm wide. They are easy to recognise as grains of rice. Tapeworms must first passthrough an intermediate
The Importance of Nature for Human and Dog Health

We know that physical exercise is one of the pillars of health for our canine friends but getting outside, benefits both them and us in more ways than one. Here at My Pet Nutritionist, we advocate a holistic approach to health and well-being, so let’s go a little off the beaten track, and take a step back from nutrition per se for a moment. Did you know that being in nature reduces scores of anxiety and depression? Our species has existed for thousands upon thousands of years – but even the oldest cities have only been around a fraction of that! What this means is that we largely evolved in nature, and this environment therefore shaped our brains – for want of a better phrase, going back to nature almost takes us back to our roots. What the data says: Being in nature is seen to improve sleep scores Spending time in green spaces simply makes us happier Mental stress scores significantly reduce when we live in urban areas with increased green spaces Time in nature improves our relationships with others and also cognitive functioning Findings here Findings here Findings here Not only that, but it is thought that exposure to green spaces reduces the risk of type II diabetes, cardiovascular disease, premature death and high blood pressure. Findings here Spending time outside is also beneficial for our microbiomes. Nature and The Microbiome The skin can be seen as an ecosystem, composed of living biological and physical components occupying diverse habitats. Disruptions of this ecosystem can result in skin in disorders or infections. These issues call the immune system to action, creating inflammation. Sadly, chronic inflammation is linked to a range of issues throughout the body. Exposure to toxins can disrupt this ecosystem, but it can become imbalanced simply by not having exposure to enough of the “good guys!” We can find these good guys outside, in nature. It is well established that those who live in rural locations possess more diverse bacteria on their skin. But this similarly applies to the microbiome found in the lungs too! A particular study wanted to explore the impact of nature on allergic disease suffered in the lungs. Two groups of mice were housed, one group with potted soil, one with sterile bedding. Mice who had lived on clean bedding were more susceptible to developing lung inflammation in response to asthma-triggering allergens than those housed with soil! As an aside, in this particular study, those housed with soils also scored lower on standard stress tests. Findings here In short, what is concluded is that exposure to soil supports immune tolerance and stress resilience. It is clear that being in nature is beneficial to both our physical and mental health – not only for the rewards of movement. The same applies to our dogs. Nature and Our Dogs We know that exercise improves cardiovascular health and more, but we don’t always have to exercise our dogs when outside. Yes, we said it. Stick with us a moment. Dogs use their nose to explore their environment, and what is particularly interesting is that after activity, their sniffing capacity significantly reduces. Findings here This also applies if they are stressed,stress results in the same physiological responses as activity in many ways. Therefore, it’s clear that getting outside and allowing your dog to “just be” and explore their environment, is of benefit to them. If we return to those studies on mice – as dogs sniff, they are exposing themselves to more diverse bacteria, which could potentially support their immune tolerance. Nose breathing also stimulates the vagus nerve, which as we know is the chief of the parasympathetic nervous system – this is why we often hear that allowing a dog to sniff lowers their heart rate. The simple exposure to soils through their paws and fur can also be of benefit to their whole body. Dogs groom themselves, so the soil they have walked through, is then potentially ingested. The good bugs can help support a diverse community, but this same mechanism occurs with soil laced in pesticide and exposure to harmful pesticides can result in dysbiosis. This is one of the main concerns facing us. Many countries are managing to significantly reduce their usage of pesticides, but others are increasing it. For example, Armenia have seen a 2650% increase in pesticide use since 1990. USA have seen a 125% increase in use. In the UK, we have reduced usage by 34%! Findings here If you would like to explore more about how pesticides and more affect the microbiomes in our dogs, check out our blogs here, And here. On the subject of toxins – rural air has significantly less air pollution than that found in urban locations. It is believed that half of the world’s population are exposed to increasing levels. Findings here Trees remove pollutants from the air and plants are often seen as the “lungs” of an ecosystem because they absorb carbon dioxide and emit oxygen. They also act as an ecosystem’s “liver,” filtering atmospheric pollutants like sulphur dioxide and nitrogen dioxide through their leaves. Trees are particularly effective at removing particulate matter (PM). PM comes in the form of tiny particles of organic chemicals, acids, metals and dust which are emitted from fossil-fuel-burning vehicles and factories, as well as construction sites. The largest of these particles measure up to 10 micrometers across (known as PM10s), which is around a fifth of the width of a human hair. There are also PM2.5s, measuring 2.5 micrometres across, being even smaller nanoparticle pollution. Fine particulate matter can easily permeate the respiratory system, causing lung and cardiovascular issues, but it has also been linked to inflammation and heart disease, so reduced exposure is particularly important and trees can help us here! Summary It is clear that spending time in nature ticks all boxes for all our bodily systems; it supports immune function, cardiovascular health, mental health and more! Dog walks as exercise are necessary – but dog walks in nature are
Periodontal Disease in Dogs

Being the most common clinical condition in adult dogs, periodontal disease raises the flag on why dental care is so important in optimal canine health. Sadly, here at My Pet Nutritionist, we see it, a lot. Periodontal disease begins when bacteria in the dog’s mouth forms to create a substance called plaque. The plaque sits on the surface of the teeth and with the help of saliva, it hardens to form tartar. Not only does it sit on the teeth, plaque and tartar seeps into gum lines which causes inflammation. Over a period of time, this inflammation and presence of bacteria causes damage to the structures surrounding the teeth; causing receding gum lines and eventually tooth loss. These bacteria can also travel to other parts of the body, causing a range of additional health concerns. So, let’s look at periodontal disease in more detail and what we can do to prevent it! But, before we get to the diseased mouth, let’s take a look at a healthy mouth. The Canine Mouth Puppies are born without teeth and they then develop 28 of them. They will shed these between 4-6 months of age as their 42 adult teeth erupt. A dog will possess: incisors canines premolars and molars Incisors are used for cutting food; dogs have 6 upper (maxilla) and 6 lower (mandible). Next come the canines, which are used to grab and tear food, there are 2 canines in the mandible and 2 in the maxilla. The premolars are used for chewing, tearing, and biting; there are 8 in both the mandible and maxilla. Finally, molars are used to crush food; dogs have 4 in the maxilla and in the mandible. Teeth in fact provide the first step of digestion, but over their lifetime and in consideration of genetics and poor hygiene, many dogs will lose most, or all of their teeth. Dental Disease From the moment a tooth erupts it is exposed to food, saliva, and bacteria. Periodontal disease occurs when there is a buildup of bacteria in the mouth, which forms plaque. Eventually,this hardens to form tartar. This can sit in the gum line causing inflammation, known as gingivitis. Left untreated, further harm occurs which results in periodontitis, where teeth fall out and damage can occur to the surrounding bone. Signs your dog has dental disease: Bad breath Pawing at his mouth Reluctance to eat Food or toys will have blood on them Smaller breeds are statistically more likely to suffer with periodontal disease, as are brachycephalic breeds. Their teeth are often closer together which means food and bacteria can more easily get stuck. But what is also interesting is that it is generally accepted that the inflammation and resulting tissue damage is due to an improperly regulated immune response to bacterial infection, and not solely from the bacterial pathogens themselves. This suggests that if your dog already has immune mediated health concerns, then they may be at a higher risk of dental disease. Findings here The point to make is that gingivitis is thought to be reversible, whereas periodontitis is not. Not only is the mouth and teeth a concern, but the bacteria found in the mouth of your dog can be released into the circulatory system, which then travels through the body. It has been found to damage cardiac tissue causing endocarditis (infection and inflammation in the heart). Studies have also shown that periodontal disease is linked to increased insulin resistance and kidney, and liver issues. Findings here All things considered, prevention is certainly better than cure, so what can we do? 1) Avoid ultra-processed refined foods Ultra-processed food is defined as any food that undergoes multiple processes like extrusion and milling. They may also contain added ingredients that are highly manipulated. Sadly, many dry based dog foods fall directly under this definition. In human Hunter-gatherer studies, it is demonstrated that cavities and gum disease were a rarity, and this remains in modern times; Aboriginals living a traditional lifestyle do not generally get dental disease until they adopt a Western diet. There are a number of reasons for this. The mouth, just like the gut contains its own microbiome. It is a community of microbes that maintain balance; the good guys can keep the bad guys in check. Not only do ultra-processed foods skew the balance in the mouth, but they do also the same in the remainder of the digestive tract. As we know, the gut houses much immune tissue, and so it does in fact train the immune response. As we mentioned early, it is thought that much of the damage originating in the mouth is due to an improperly regulated immune response and not solely the bacterial pathogens themselves. For this reason, we would advocate the removal of an ultra-processed diet for oral and gut microbiome health. For more information on the microbiome in your dog, check out our blog here. 2) Dental Sticks There are a number of chews on the market promoting oral health, but it is actually the mechanism of chewing that helps to reduce build up. Chewing stimulates saliva which produces anti-bacterial agents, helping to keep the mouth clean. Not only this but the abrasion that occurs during chewing helps to scrape deposits off the teeth. What type of chew is best? Here’s what the data suggests: Raw bones reduced mouth bacteria by 79% Daily brushing reduced it by 70% and, Marketed dental chews reduced it by 54-60%. Findings here Raw bones lead the way in reducing bacteria,and the added bonus? You know exactly what you are feeding. There is no long list of ingredients to consider. If you are opting for raw bones, ensure they are a manageable size for your dog; chicken necks and wings are a great place to start if you’ve never fed them before! If you’d learn to learn more about the benefits of chewing for your dog, check out our blog here. 3) Diet It is thought that periodontal disease may be related to
Dog Brain Games

We all understand the importance of taking our dog for that daily walk – not only to provide physical exercise, but to sniff, play and have a stroke from the neighbours. Yet, what we sometimes forget, is the importance of mental stimulation for our faithful friends. Not only are brain games known to help ward off cognitive decline, which is crucial for our ageing pets but brain games help reduce stress and manage anxious behaviours too! Findings here Time and time again,when given the choice, animals will always choose a more complex environment. So, as we look to support optimal health in all ways we can here at My Pet Nutritionist, we thought we’d compile some of our favourite brain games for dogs! 1) Name Game! Here, we are teaching our dog the name of all his toys. Encourage your dog to retrieve one of his toys. As soon as he collects it, label the toy, “ball!” “rope!” etc. Repeat and praise as he retrieves it. Start with one or two toys. If he doesn’t falter to retrieve the correct toy, introduce more toys. This game is testing his memory as well as his recognition. This game is perfect for those toy orientated dogs – providing they don’t choose to run off with the toy and ignore you. If this happens, calmly ignore them until they return. Remember, you are praising and providing attention for the behaviour you want to see! You can always use this game to introduce tidy up time – as you ask your dog to retrieve specific toys, hold your hands over an allocated storage box. As he brings the toy to the box, label the behaviour “tidy!” Praise and reward. 2) Spin the bottle! Perfect for those food orientated pooches. You will need: A sturdy plastic bottle (we know it’s not eco, but not so bad if you are able to recycle) A cross bar – a piece of doweling or bamboo Pierce holes on opposite sides of the bottle – large enough so you can push the cross bar through. You should be able to hold the cross bar and the bottle will spin around on the bar. Put some small treats into the plastic bottle to start with, so it’s easy for your dog in the first attempt. Food orientated pooches will immediately sniff out the treats in the bottle and attempt to get them out. They need to learn to spin the bottle, so the treats fall out. Once they have figured out the basic idea of the game, you can make it more difficult by using a range of sized treats, so some fall out quite easily, others don’t. Or you can move you hands to the cross bar and provide some resistance as they spin the bottle. Remember to make allowance for any additional food/treats in allocated mealtimes. It can soon add up! 3) Gone Potty Another one for those food orientated pooches and another one to make them think. What you will need: High value treats 3 plastic plant pots Start with one pot upside down and place a treat underneath it. Allow your dog to watch you place the treat. Encourage your dog to knock the pot over to get to the treat. Introduce another plant pot – allowing your dog to watch which pot you put the treat under. Eventually, you can be working with the three plant pots. Your dog has to figure out where the treat is – he may have watched you, or he may have sniffed it out. Watch for impatient dogs who just knock all the pots over to find it; a different game may be best for them; brains over brawn after all! 4) Shy Dog! What you will need: Post it notes Treats Place a post-it-note on your dog’s nose. He should instinctively paw at it to remove it. As he does, praise and reward him. Repeat. Don’t worry if he removes it, just apply another one. As he paws to remove the note, label the behaviour “shy dog” or whichever command you think fits. Repeat. Eventually, he should be a shy dog, on command. 5) Treasure Hunt A super-easy brain game is the good old treasure hunt. First of all, figure out which reward your dog places a higher value on. Offer him food and toy rewards on the ground. Watch the reward he chooses first. This will be your treasure. Whichever he opts for, you are going to hide it around your home. Place treats/toys behind cushions,curtains, under tables or stools, behind doors, in boxes etc. Just be mindful that you place the treasure where it’s safe to access and you’re sure your dog won’t just barge their way around your home to find it! You may have to show your dog where you are hiding the treasure when you first introduce this game, just until they get the hang of it. You can build tidy up time into this game if you are using toys too! Inadequate mental stimulation can present in many ways from pacing and destruction to self-licking and self-harm. To support our dog’s health and well-being, we need to provide for both his physical and emotional needs. Brain games are a great place to start! Whilst we may conjure up images of our dog’s equivalent of Sudoku, brain games simply provide cognitive challenge. The important thing is to provide just enough challenge – if your dog seems disinterested, try a different game, if they seem frustrated, end the session with something you know they can do, and try to approach the game in a different way next session. As Ignacio Estrada poignantly suggested, “if a child can’t learn the way we teach, maybe we should teach the way they learn.” The same applies to our dogs. Thanks for reading! Team MPN x
How Nutrition Affects Your Pet’s Genes

Is it true that DNA is our destiny? This concept is much like Schrodinger’s cat – a paradox. With Schrodinger, his cat was both alive and dead until his box was opened. With our DNA, we can blame our Grandma for something that has gone wrong, but equally how we choose to live our lives can also affect whether or not we have something to blame Grandma for. Are you lost yet? So were we. But here at My Pet Nutritionist, we like to give you, as pet owners tools to support your pet’s health, so we’ll give you the 411 on DNA and how we can use nutrition to lessen how much we blame Grandma for (or Grandad, could be him too!) Pretty nifty, don’t you think? This is what we call nutrigenomics. Let’s start off with some key definitions: Genomics: This is the study of all genes and gene products. It explores how they interact and influence biological pathways, networks and physiology. Nutrigenomics are therefore a subset of genomics with focus on the genes that relate and respond to nutrition and lifestyle interventions. As it’s relevant, epigenetics is the study of how the environment and other factors can change the way that genes are expressed. Epigenic markers are chemical compounds that are added to genes to regulate their activity. Whilst these modifications do not change theDNA sequence itself, epigenetics affects how cells read genes and whether the cells should produce relevant proteins. The point to note is that DNA doesn’t change – gene expression does. This is where the idea of turning genes on and off comes from – epigenetic markers can turn genes on, and off. Gene Writers Much like I’m writing this blog now, we can think of our DNA having workers at a word document. The fact that I had a nutrient dense breakfast and have a cup of tea next to me, with the birds singing by my window, places me in good working conditions. The blog should therefore make sense – be well-formatted and do the job it is meant to do (share information). If I had not slept for days, gorged on ultra-processed food, and been bombarded with stressors, the blog may not make as much sense, it may even have a few typos, and not in fact do you the job it was meant to (you have no clue what I was writing about). Our gene workers are similar. If they have supportive working conditions,they do what they are supposed to, they send the correct information out; cells know what they are supposed to do, and they even know when they’re not supposed to be doing anything. If they have poor working conditions, they send out half finished messages (or coding), which may contain typos; cells don’t really know what they are supposed to be doing and start to go a little rogue. The genome is malleable – our genes are like a word document – it is a living document. They also eavesdrop on every choice we make, or those we make for our pets. Dirty Genes and those that just act Dirty The reason we think DNA is destiny, is because its partly true. When us, or our pets are born, we have our very own DNA. Within that, there may be these alterations, or variants known as single nucleotide polymorphism (or SNPs, we call them snips). These SNPs can cause problems – they are like the inbuilt typos on your word document. Like the Microsoft paperclip assistant that would always pop up no matter how many times you tried to get rid of him! So, both us and our dogs can be born with dirty genes that send unclear messages to our cells. But, lifestyle, and nutrition, can also make the genes dirty. Luckily, we live in an age of washing machines, so we’ve got some great ways to clean them up again! One of the ways in which our DNA expression can be altered is through methylation. This is the addition of a methyl group – demethylation is the removal of a methylation group. Methylation is a key chemical process for every cell and cellular activity, constantly and dynamically regulating our daily function. It supports growth and repair, immune function, synthesis of neurotransmitters and phospholipids, and plays an important role in detoxification. If you’d like to know more about detoxification then check out our blog here. But what is also nifty is this positioning of the methyl groups can be passed down from generation to generation – which ultimately affects the health of future generations. Take note breeders! Poor DNA methylation has been increasingly associated with many diseases, from cancer to autoimmunity. And of course, this process requires a number of co-factors. Where do these co-factors come from? The Diet. Nutrients crucial in DNA Methylation: Folate: spinach, broccoli, romaine lettuce, daikon radish, liver. Vitamin B12: liver, sardines, salmon, lamb, beef, dairy, all meat,eggs. Vitamin B6: spinach, cauliflower, all meat, liver, sweet potato, salmon, leafy greens, daikon radish, liver. Vitamin B2: spinach, beetroot, mushrooms, eggs, broccoli, kale,peppers, daikon radish, liver. Zinc: beef, spinach, mushrooms, lamb, pumpkin seeds, turkey,seafood. Magnesium: leafy greens, pumpkin seeds, spinach, sunflower seeds,daikon radish. Choline: egg, collard greens, brussels sprouts, spinach, chicken, turkey, salmon, sardines, beef. Betaine: spinach, sweet potato, turkey, veal, beef, liver. Methionine: nuts, beef, lamb, turkey, fish, shellfish, eggs. Not surprisingly, ultra-refined foods place a strain on methylation, which is why we would always advocate a fresh, wholefood diet for your pet. So if you want efficient methylation processes – ensuring a sufficient supply of these co-factors is essential. There are also certain food compounds which ultimately affect gene expression through their influence on DNA methylation. This is where the concept of nutrigenomics comes in. Polyphenols Catechins have been seen to modulate gene expression. They are polyphenolic compounds found in plants. Sources include apples, blackberries,pears, green tea (opt for decaf if you’re feeding it to your dog). They also exhibit antioxidants
Puppy Nutrition 101

Puppy Nutrition 101 The dog is unique amongst other mammals in that it has the widest range of normal adult body weight within one species. Many breeds will reach 50% of their adult size within 5-6 months. Some breeds will be fully grown by 8-12 months, some 12-18 months, and others 18-24 months. With this incredible range, it’s no surprise that puppyhood is in fact a very sensitive period, and one that we need to get right. Here at My Pet Nutritionist, we are incredibly lucky that we support many owners in choosing the right nutritional plan for their growing puppy. But we thought we’d compile a brief guide to some of the most important things to consider for the growing puppy. Growth and Development After nursing, post-weaning growth is the most nutritionally demanding period in a dog’s life. For large and giant breeds, the length and speed of their growth poses an even higher nutritional demand. By maturity, most dogs will have increased their birth weight by 40-50 times. How amazing is this? But it also poses something to be very conscious of. Physical Growth How are bones formed? Also known as ossification, bone formation is a process where new bone is produced. Look at any large breed and it is clear to see how much new bone needs to be produced from birth to full skeletal maturity. Bone starts as a cartilage model which gets slowly replaced. Osteoblasts are the cells that form new bone. They secrete osteoids. Osteoid tissue is simply unmineralised bone tissue. Soon after the osteoid is laid down,inorganic salts are deposited which forms the hardened material that we know as bone. These inorganic salts include calcium and phosphorus. Bone formation proceeds outwards from ossification centres; short bones tend to have one in the middle whereas long bones typically have three, one at each end and one in the middle. Ossification, or bone formation continues until there is a thin strip of cartilage left at each end of the bone. This is known as the epiphyseal plate, or growth plate in the dog world. When the bone reaches full adult maturity, the cartilage is replaced with bone and“sealed” for want of a better word. It is therefore no surprise that certain minerals are necessary for physical bone growth, along with some vitamins. Calcium is the most abundant mineral in the body; the majority of which is contained in the skeleton. Phosphorus is the next most abundant; also found in bone. Although they have separate functions within the body, being so closely interrelated, they are usually considered together. Calcium is involved in constriction and dilation of blood vessels, nerve impulse transmission, muscle contractions(including the heart), secretion of hormones and blood coagulation. It also plays a role in fluid balance in cells (contributing to homeostasis). A diet grossly inadequate in calcium, results in hypocalcemia. The body will remove calcium from bones to ensure normal cell function in the rest of the body. This leads to weakened bones. Hypercalcemia is a little more uncommon, but it is most often linked with overactive parathyroid gland function. Phosphorus is essential in cell growth and differentiation, energy use and transfer, fatty acid transport and amino acid and protein formation. In general, phosphorus is better absorbed from meat products than plant products. Phosphorus found in meat is mainly in its organic form; in plants it is in the form of phytic acid. Phytic acid impairs the absorption of iron,zinc and calcium and has been linked to mineral deficiencies. It is often referred to as an anti-nutrient. Deficiencies of calcium and phosphorus are unusual, but imbalance is noted. In unbalanced diets, calcium deficiency can develop alongside high levels of phosphorus. Low calcium levels stimulate the release of parathyroid hormone, which increases the production of the active form of Vitamin D. This results in an increased bone reabsorption to restore calcium levels. This eventually leads to bone demineralisation and a loss of bone mass. In dogs, this is more commonly noticed in the mandibles (jaw bones), leading to tooth loss and periodontal disease. Attention is most often paid to the calcium:phosphorus ratio. The note to make is that organic sources of both minerals are slowly and less efficiently absorbed; so, in fresh fed dogs this is less of a concern in terms of excess. Phosphorus found in meat products however is more efficiently absorbed than that found in plants. Findings here Other nutrients relevant to skeletal development include vitamin D, vitamin A, copper, zinc and manganese. Deficiency or excess in these have regularly been linked to abnormal orthopaedic development. But, as we know, it is not just the bones in puppies that grow – it is in fact every part of their body! What do puppies need to grow? Protein Proteins are large, complex molecules composed of hundreds to thousands of amino acids. They are literally the building blocks of the body. Protein is required in the diet to provide a source of amino acids to build, repair and replace body proteins. Proteins in the body have numerous functions. Major structural components of hair, skin, nails, tendons, ligaments and cartilage. Hormones are composed of protein molecules – these include insulin and glucagon which are key to maintaining blood sugar levels. Proteins are found in the blood– for example haemoglobin carries oxygen between the lungs and cells,lipoproteins carry fats throughout the body and transferrin carries iron through the blood. Proteins are also found in the immune system in the form of immunoglobulins to make the antibodies that provide resistance to disease. All proteins are in a constant state of renewal and degradation and during growth (or reproduction) additional protein is needed for the creation of new tissue. High rates of protein synthesis occur in: The production of red and white blood cells Epithelial cells of the skin and those lining the GI tract and pancreas Digestion of Protein Dietary amino acids are absorbed in the gastrointestinal tract, following disruption of their structure. They are then transported
Your Pet’s Lymphatic System

If you spotted our My Pet Nutritionist blog last week, then you’ll notice that we didn’t really discuss the lymphatic system with the immune system, despite them being intricately linked. It’s because this system deserves a blog all of its own. So, let’s take a look at what it is and what it does! The lymphatic system is a network of tissues and organs which help the body eliminate toxins, waste, and other unwanted compounds. It is like the sewer system for the body. But it also plays a role in immune function. Like the blood system, the lymphatic system is made up of many vessels that branch all around the body. It is a subset of both the circulatory and immune system. Without it, neither of them would function. The lymphatic system includes: Lymph – a fluid that moves all around the lymph system. It contains a type of white blood cell known as lymphocytes. Lymphocytes – these are white blood cells that fight infection and disease. Lymph vessels – these are tiny tubes that carry lymph fluid around the body. Lymph nodes – these are small, bean-shaped organs. They act as filters for the lymph fluid as it travels all over the body. Lymph nodes are found in the underarms, groin, neck, chest, and belly (abdomen). During infection, lymph nodes swell because of the multiplication of lymphocytes multiplying inside. Function of the Lymphatic System A major function of the lymphatic system is to drain body fluids and return them to the bloodstream. Blood pressure causes leakage of fluid from the capillaries, resulting in the accumulation of fluid in the interstitial space—that is, spaces between individual cells in the tissues. This is where the lymphatic system comes into play. It drains the excess fluid and empties it back into the bloodstream via a series of vessels, trunks, and ducts. But as we mentioned, it also plays a role in the immune function of the host. The lymphatic system is a sort of immune surveillance system. It protects us against pathogens. Our dogs are constantly being invaded by bacteria and viruses; they take them up through food, they breathe them in, and they get in through wounds in our skin.These pathogens must be removed by the immune system. Because the lymphatic system is constantly filtering the contents of the body it collects these micro-organisms which have been engulfed by immune cells and carries them to the lymph nodes. Within the lymph nodes there are T cells and B cells which recognise these pathogens and which multiple in response. So, the lymphatic system acts as a collecting system and therefore an integral part of the immune system. Another role of the lymphatic system is the absorption of fats and fat-soluble vitamins from the digestive system and the subsequent transport of these substances into circulation. The mucosa that lines the small intestine is covered with finger like projections called villi. There are blood capillaries and special lymph capillaries, called lacteals, in the centre of each villus. The blood capillaries absorb most nutrients, but the fats and fat-soluble vitamins are absorbed by the lacteals. The lymph in the lacteals has a milky appearance due to its high fat content and is called chyle. Organs and Tissues of Interest The primary lymphoid organs are the bone marrow, spleen, and thymus gland. Tonsils are known as lymphoid nodules. The lymphoid organs are where lymphocytes mature, proliferate, and are selected, which enables them to attack pathogens without harming the cells of the body. As we explored in the guide to the immune system, lymphocytes are the primary cells of adaptive immune responses. The two basic types are B and T cells – B cells maturing in the bone marrow, and T cells maturing in the thymus. Bone marrow is the spongy tissue in the middle of the bigger bones in the body. The bone marrow makes blood cells from stem cells. These are undeveloped cells that can divide and grow into different types of blood cells needed by the body including red blood cells, platelets, and white blood cells. This is where lymphocytes are made. The thymus is in the thoracic cavity, just under the neck. It’s made up of two lobes of lymphoid tissue. Each lobe has a medulla surrounded by a cortex. The cortex is where immature lymphocytes first go to become T cells, but their maturation finishes in the medulla. The spleen is in the upper-left part of the abdomen. It is tucked up under the ribs. The spleen’s main function is to filter the blood. It removes old or damaged red blood cells, which are phagocytised by macrophages. The spleen also detects viruses and bacteria and triggers the release of lymphocytes. But as the main entry for microbes into the body is through mucosal surfaces, most of the lymphoid tissue is located within the lining of the respiratory, digestive, and genitourinary tracts. These are known as MALT and GALT. MALT is mucosa associated lymphoid tissues, and GALT is gut-associated lymphoid tissue. Tonsils are an example of MALT. The tonsils are masses of lymphoid tissue found in the back of the throat and nasal cavity. Tonsillitis is when they become swollen and typically a sign of infection. Peyer Patches within the small intestine are also MALT. They are like the tonsils for the digestive system. The function of Peyer’s Patches is to analyse and respond to pathogenic microbes in the ileum. They trap foreign particles survey them and then destroy. What can go wrong with the lymphatic system? Enlarged (swollen) lymph nodes (lymphadenopathy): Enlarged lymph nodes are caused by infection, inflammation, or cancer. Swelling or accumulation of fluid (lymphedema): Lymphedema can result from a blockage in the lymphatic system caused by scar tissue from damaged lymph vessels or nodes. Cancers of the lymphatic system: Lymphoma is cancer of the lymph nodes and occurs when lymphocytes grow and multiply uncontrollably. For dogs, lymphoma can arise in the skin. Summary The lymphatic system is an extensive drainage network that helps keep bodily fluid levels in balance and defends the body against infections. It is made up
10 Top Foods For Your Dog’s Immunity

Here at My Pet Nutritionist, we know that every cell has a job to do, and it needs certain nutrients to do those jobs. The cells of the immune system have a particularly important job to do and so they too need to be fuelled properly. So, we’ve collated our top foods that you can add to the bowl to support immune function in your dog. The list is not in order of importance, just simple options to pop in! 1) Red Bell Peppers Red bell peppers contain almost three times the amount of Vitamin C that an Orange does! We all know that oranges are touted for their immune supporting functions, but citrus fruits can sometimes cause some digestive discomfort for our furry friends (not all though). Vitamin C contributes to immune defence by supporting various cellular functions of both the innate and adaptive immune system. Vitamin C helps encourage the production of white blood cells known as lymphocytes and phagocytes, which as you know if you read our guide to the immune system, they help protect the body against infection. 2) Broccoli Broccoli is packed full of vitamins and minerals. You will find vitamins A, C and E, fibre and antioxidants in these little green trees! Vitamin A helps maintain structural and functional integrity of mucosal cells in innate barriers (skin, respiratory tract etc). It is also important for the functioning of natural killer cells, macrophages, and neutrophils. In the adaptive immune response, vitamin A is necessary for the functioning of T and B cells and therefore for the generation of antibody responses to an antigen. Vitamin A also supports the Th2 anti-inflammatory response. Broccoli also contains a phytochemical called Indole-3-Carbinol. This compound is formed from a substance called glucobrassicin found in broccoli and other brasscia vegetables such as brussels sprouts, cabbage, collards, cauliflower, kale, mustard greens and turnips. Indole-3-carbinol is formed when these vegetables are cut, chewed or lightly cooked and show some exciting new research on their anti-cancer effect. Findings here The Ultimate Raw Feeding Guide for Dogs Rich in Vitamin C, it is also packed full of antioxidants like beta carotene. Not that you would know it because the chlorophyll hides the yellow-orange pigment. Beta carotene is converted toVitamin A in the body but beta carotene, like all carotenoids is an antioxidant, which protects the body from free radicals. Free radicals are produced by macrophages whilst fighting off invading germs, and these free radicals can then damage healthy cells leading to inflammation, so a diet rich in antioxidants can help mitigate the damage! Best to lightly cook spinach before you offer it to your dog though! 4) Turmeric This bright yellow spice has been used for years as an anti-inflammatory, but it is also known as an immunomodulator. It interacts with dendritic cells, macrophages and both B and T cells. But it also interacts with cytokines and this is why we generally note it’s role in the inflammatory response. The inclusion of turmeric has been seen to increase antibodies to particular antigens and overall, it is seen to improve both innate and adaptive immune function. 5) Poultry There’s a reason why you were always told to eat chicken soup if you felt under the weather! Poultry like chicken and turkey is high in vitamin B6. In the innate immune system, vitamin B6 helps regulate inflammation and has roles in cytokine production and natural killer cell activity. In the adaptive immunity system, vitamin B6 plays a role in the metabolism of amino acids, which are the building blocks of cytokines and antibodies. B6 is also involved in lymphocyte proliferation, differentiation and maturation and it maintains Th1 immune responses. Stock or broth made by boiling chicken bones is also a great option and contains gelatin, chondroitin and other nutrients that are helpful in gut healing in immune function. 6) Shellfish Many types of shellfish are packed full of zinc and this is a particular powerhouse when it comes to immune function. It has antioxidant effects protecting against reactive oxygen species, it helps modulate cytokine release and also helps maintain skin and mucosal membrane integrity (that first line of defence). In the adaptive immune response, zinc has a central role in cellular growth and differentiation of immune cells. It plays a role in T cell development and activation and supports the Th1 response. Cooked mussels are a great addition to your dog’s bowl and are easily picked up in the supermarket. 7) Mushrooms! Not only are mushrooms a great source of B vitamins, but they contain the less talked about mineral selenium. There are such things known as selenium-dependent enzymes which can act as redox regulators and antioxidants; so,selenium can help protect against free radicals too! Not only that but selenium is involved in T cell proliferation and it also has a role in antibody production. Lightly cook mushrooms before offering them to you dog and check out the range of species that have additional health benefits too! 8) Kale One of the leafy greens, kale is rich in folate, or vitamin B9. B vitamins are required to convert food into energy and the demands placed upon the body during sickness can mean more of a demand on this process. Not only that but folate plays a role in maintaining natural killer cells and plays a role in mounting a sufficient antibody response to antigens. Folate also supports Th1 mediated immune responses. In cases of folate deficiency, immune function is often impaired. Low Fat Kangaroo 9) Liver! Whether you opt for cooked or raw, liver is a good source of vitamin D. We find vitamin D receptors throughout the immune system which demonstrates the role it plays in its function. Vitamin D stimulates immune cell proliferation and cytokine production and it helps protect against infection caused by pathogens. It also demonstrates an inhibitory effect in adaptive immunity, suggesting that it is in fact an immune modulator. This is often why we notice increased cases of autoimmunity where there is low vitamin D.
Your Pet’s Immune System

Here at My Pet Nutritionist, we often find that in many cases, immune function in some pets has gone a little awry. Being the thing that quite literally keeps us alive, you can see, how optimal immune function is kind of important. So, we thought we’d give you a run through on its function. What is the Immune System? When the body is invaded by bacteria, a virus or parasites, an immune alarm goes off, setting off a chain reaction of cellular activity in the immune system. Specific cells are deployed to help attack the invading pathogen. Those cells often do the job, and the invader is destroyed. But sometimes, when the body needs a more sophisticated attack, it turns to a more specialised set of cells. These cells are like the special ops of the immune system—a line of defence that uses past behaviours and interactions to tell it exactly how to deal with the threat. The immune system is responsible for all of this, and not surprisingly is has many systems to mobilise action. We tend to explore the immune system in terms of innate immunity and adaptive or acquired immunity. Innate immunity is what everyone is born with – it’s a type of general protection. The innate immune system provides the first line of defence; broadly divided into physical and chemical barriers and nonspecific responses. The physical barriers include the skin and mucosa (a membrane that lines cavities in the body) of the digestive and respiratory tracts. Saliva, tears, and mucous (that sticky material) all help to provide a barrier, as does the microbiome of the skin and gut. In the gut, stomach acid also provides a first line of defence as its acidity level can kill off potentially harmful pathogens. Hair inside the nose also traps pathogens and environmental pollutants. This is where you’ll recognise the age old having something stuck up your nose when you are viciously sneezing! Pathogens that sneakily get past these first defences are then tackled by the next row of soldiers in the innate immune system. There area number of white blood cells involved in innate immunity: Monocytes which develop into macrophages Neutrophils Eosinophils Basophils Natural Killer Cells But there are also other participants: Mast Cells The Complement System Cytokines Macrophages develop from a type of white blood cell called monocytes. Monocytes become macrophages when they move from the bloodstream to the tissues. They ingest bacteria, foreign cells, damaged and dead cells. This process is called phagocytosis, and cells that do the ingesting are called phagocytes. Macrophages secrete substances that attract other white blood cells to the site of the infection. They also help T cells recognise invaders and therefore also participate in acquired immunity (which we’ll come to later). Neutrophils are among the first immune cells to defend against infection. They are phagocytes, which ingest bacteria and other foreign cells. Neutrophils contain granules that release enzymes to help kill and digest. Neutrophils also release substances that may trap bacteria, preventing them from spreading and making them easier to destroy. Eosinophils can ingest bacteria, but they also target foreign cells that are too big to ingest. Eosinophils contain granules that release enzymes and other toxic substances when non-self-cells are encountered which make holes in the target cell’s membranes. They also produce substances involved in inflammation and allergic reactions. We know this because those suffering with allergies, parasitic infections, or asthma tend to have more eosinophils in the bloodstream than those not suffering with the conditions. Natural killer cells are ready to kill as soon as they are formed. They attach to infected cells or cancer cells, they then release enzymes and other substances that damage the outer membranes of these cells. NK cells play a role in the initial defence against viral infections, and they produce cytokines that regulate some of the functions of T cells, B cells, and macrophages too! We’ll look at T and B cells later. Also involved in the inflammatory response, mast cell function resembles that of basophils in the blood. When they encounter an allergen, they release histamine. Histamine causes blood vessels to widen, thereby increasing blood flow to the area and so, we have the usual signs like redness, heat, swelling and pain associated with inflammation. The complement system consists several proteins that function in a sequence. One protein activates another,which activates another, and so on to defend against infection. This is known as the complement cascade. Complement proteins play a role in both innate and acquired immunity. They kill bacteria directly,help destroy bacteria by attaching to them, they attract macrophages and neutrophils, neutralise viruses, help immune cells remember invaders, promote antibody formation, and help the body eliminate dead cells and immune complexes. Cytokines are the messengers of the immune system. White blood cells and other cells of the immune system produce cytokines when an antigen is detected. There are many different cytokines, which affect different parts of the immune system. Some cytokines stimulate activity – asking the white blood cells to become more efficient killers, some cytokines inhibit activity, signalling an end to an immune response and some are known as interferons, which interfere with the reproduction of viruses. Cytokines also participate in acquired immunity. Acquired (adaptive or specific) immunity is not present at birth. It is learned. Its job is to learn, adapt and remember. It’s almost like a cheesy advert for a local school! Acquired immunity does take time to develop after exposure to a new antigen, but afterwards, the response is quicker and more effective! Key Definitions Antibody – Antibodies are specialised, Y-shaped proteins that bind like a lock-and-key to the body’s foreign invaders — whether they are viruses, bacteria, fungi, or parasites Antigen – An antigen is any substance that causes the immune system to produce antibodies against it. The white blood cells responsible for acquired immunity are Lymphocytes which include T and B cells. There is also a role for others in acquired immunity which include dendritic cells, cytokines, and the complement