Why Is My Dog A Fussy Eater?

Any quick search on the internet will populate a range of breeds that are seemingly notorious for being fussy eaters. If you have a basenji, husky or yorkie, it looks like you’re signed up for a lifetime of stressful meals. Except here at My Pet Nutritionist, we don’t believe everything we read on the internet. Whilst all those breeds could indeed be fussy eaters, so can many more. And they are. It is perhaps one of the more common questions we are asked, “how can I get my dog to eat?” Being a fussy eater can be technically defined as an eating disorder, and there are a number of causes. From behavioural to biochemical, let’s take a look at the complex world of the fussy eater. The Function of Eating Food components are the main sources of energy for the canine body. Not only that, but it provides the compounds needed for each cell to do its job. As the body carries out its tasks, it uses fuel and compounds, as reserves run low, signals bounce around the body to kickstart feeding behaviour. This is hunger, a physical need to eat. Appetite is quite simply the desire to eat. Hunger and appetite can be at odds. You may want to eat, but not need to, and you may need to eat, but not want to (in times of stress for example). Appetite and hunger are largely controlled by the brain and a range of hormones. The Brain In the brain sits the hypothalamus. Through its connection to the pituitary gland, it modulates the endocrine system. It is involved in a range of daily activities including temperature regulation and energy maintenance. We know it plays a role in eating behaviour as several lesions to small areas of it can result in overeating and under eating. The lateral hypothalamus is defined as the feeding centre and the ventromedial hypothalamus is defined as the satiety centre. This is largely an oversimplification, but it certainly demonstrates the role. The hypothalamus receives information from the digestive system like stomach extension, chemical nature of ingested food and the metabolic activity of the liver and uses it to maintain energy balance. It also receives information from the emotion/reward system. Food is a rewarding object that induces pleasant emotions. Findings here The amygdala is largely responsible for this. Studies have demonstrated that when the reward value of food decreases, so too does eating motivation. Sadly, these studies often include the injection of lithium after eating, of which causes discomfort. But it does raise an interesting point in terms of the fussy eater in your life. We’ll revisit this later. Food reward is elicited by several events that occur before it even passes through the oesophagus, namingly the appearance and shape of the food, the taste and smell and then the pleasure of swallowing the food. We know this because in tube-feeding studies, reward sensations are reduced. In short, when subjects were no longer allowed to taste or chew it, they did not want to eat it. That said, in sham studies, when animals are denied nutrition because everything swallowed leaks out of a tube connected to the oesophagus, they eat and swallow more than usual, but they are still unsatiated. This tells us just how complex eating behaviour actually is. And provides food for thought for the gluttonous dog (on the other side of the scale). Hormones Hormones are probably the most talked about in terms of eating behaviour.  You’ve all likely come across leptin and ghrelin. Leptin is produced in adipose cells, or fat cells. So, the more fat cells there are,the more leptin. In short, the more fat available in reserves, the less you need to eat. If you have no fat cells, you need to conserve your energy until you next find food. Leptin crosses the blood-brain barrier, and there are high numbers of leptin receptors found in the hypothalamus, brain stem and other regions of the brain. Rising leptin in a fed state inhibits food intake by suppressing a range of peptides involved in eating behaviour. Ghrelin is predominantly secreted in the stomach and it too modulates cells found in the hypothalamus by increasing excitatory inputs and decreasing inhibitory inputs.  Here we are talking about neurotransmitters. These chemical messengers modulate much of our and our pet’s behaviour and they either make something do something or stop something from doing something. Whilst dopamine can be both inhibitory and excitatory, ghrelin is seen to have a large influence on the release of dopamine via increases in cell excitability. As dopamine is involved in reward and motivation, ghrelin is thought to target the motivational functions geared to gaining food and to select those which are more rewarding (high calorie). Findings here In eating disorders, dopamine is one of the neurotransmitters that gets a lot of attention. In times of reduced food intake (fussy eating), dopamine neurons are activated, in the short-term rewarding the lack of food. It is considered that it is a physiological response in an attempt to increase motivation to forage for food. Findings here However, there are also other mechanisms in which the dopaminergic system comes into play for the fussy eater. A central feature of the dopamine neuron response is that it is triggered by unexpectancy. After receiving an unexpected reward like food (or how many likes our recent post has got on social media) a dopamine surge is elicited. When this becomes a regular occurrence, the dopamine signal is triggered by the conditioned stimulus in predicting the reward. However, the dopamine system does not respond when the reward is received. If the reward is predicted, then not received, there is a dip in dopamine activity. What this means, is that your dog may do the song and dance ready for their bowl of food, but then walk a way as soon as it is placed in front of them. The reward they predicted (tasty food), isn’t what was received. The other neurotransmitter that gets a

Why Does My Dog Keep Licking?

If you’ve just rinsed your dog off after a meander through the woods, then their licking is likely grooming behaviour. But, here at My Pet Nutritionist, we often see dogs who excessively lick causing abrasions and hair loss. Whilst it’s often indicative of an irritation, there are in fact some other reasons why your dog may start licking in the absence of a jaunt through a muddy puddle. Let’s take a look at some of the more common causes. 1) Stress Yes – stress can take the blame for this one too!  Stress is like the wonder woman of life – is there anything she can’t do? For anyone who has spent time investigating dog behaviour, you’ll know that lip licking in particular is a sign of stress. An interesting theory here suggests that because stress depletes essential nutrient resources, lip licking is in fact a sign of malnutrition. Deficiencies in a range of nutrients like vitamin B2, B3, B12, iron, and Vitamins A, C and K and Zinc have all been known to cause irritation and inflammation in and around the mouth and lips. The licking is thought to be an attempt to soothe it. Findings here However, other suggestions explore the idea that the lip licking mechanism is thought to soothe the stress response by activating the parasympathetic nervous system. Yet, this mechanism can apply to licking of all body parts, not just the lips. The stress response is dominated by the sympathetic nervous system; it increases heart rate, widens eyes in order to assess the threat better and redirects resources in order to deal with it. Once the threat has passed, the parasympathetic nervous system kicks in and re-balances. The chief of the parasympathetic nervous system is the vagus nerve, and chewing, along with licking is considered to activate it. Through the action, attention is redirected and focussed on that particular task, not what is making them stressed. Findings here Licking is also deemed a self-soothing behaviour through its association with oxytocin. Oxytocin is a hypothalamic nonapeptide linked to increased levels of social interaction, well-being and anti-stress effects. Oxytocin is released by sensory stimulation (touch) and promotes the release of dopamine whilst decreasing the cascade of stress response mechanisms throughout the brain and body. Oxytocin also modulates the activity of serotonin which as we know is a key hormone in mood stability, feelings of well-being and reward. An element of this could have also been learned behaviour from their mother. Licking and grooming behaviour is a key feature in determining neural changes and fear responses in offspring. Those from low licking mothers tend to show a greater stress-response and proceeded to be low-lickers themselves (if they were female and had their own litter). The same also occurred for high lickers. Findings here The bottom line?  Excessive licking could be a response to stress faced by your dog. Watch out for other signs of stress like: Panting in the absence of exercise Salivating in the absence of food Pacing Inappropriate toiletting Unusual vocalising Out of character behaviour Wide eyes Flat ears Abnormal tail placement Work to remove the trigger and support them with other stress reduction strategies. Also, be mindful that chronic stress can deplete essential nutrient resources. our Calm Complex can help support the above signs of stress. 2) Pain Pain is an uncomfortable feeling that gives us and our dogs an indication that something isn’t as it should. Not only are many breeds incredible at hiding pain (it wouldn’t have helped them in evolutionary terms), but they also lack the ability to converse.  Whilst we would all love to think we have this form of communication with our dogs, we can miss things, especially if they are pretty crafty at hiding them! The sensation of pain is a necessary function that warns the body of potential or actual injury. Whilst we may think that dull ache in our lower backs is merely an inconvenience, it’s a rather reliable indication that our office chair possibly doesn’t suit us. Pain occurs when a nociceptor fibre detects a painful stimulus on the skin or in an internal organ. This detection is picked up by other receptors in the spinal cord and brainstem and then transmitted to the various areas of the brain. This is done through the incredible work of neurotransmitters. There exists both inhibitory and excitatory neurotransmitters. Those that make things happen, and those that apply the brakes. Inhibitory neurotransmitters are involved in the modulation of pain; including enkephalins and endorphins, serotonin, noradrenalin, GABA, acetylcholine and oxytocin. Excitatory neurotransmitters acting without an inhibiting system results in pain. Which is why pain killers primarily prevent the release of some excitatory neurotransmitters (and can in fact make you or your dog drowsy). When we look at the neurotransmitters involved, it’s possible to see why our dogs may start licking an area that is painful to them. Through touch they can stimulate the release of oxytocin (a modulator of pain). Not only that but self-trauma (excessive licking) is thought to promote the release of endorphins, which are also pain modulators. Findings here This demonstrates how dogs can get into a vicious cycle, they want to lick to soothe, but the more they lick, the more trauma they cause, resulting in more licking. There is also the possibility, that what could have started as a pain response, could turn into irritation, or what started as irritation, could turn into pain and continue the cycle. 3) Itch Itch is a sensation felt on the skin, which causes the desire to scratch. Although initially it could be as simply as scratching something to remove it, itching can become stressful when excessive. When tissues are stimulated by allergens, histamine is released from mast cells. Histamine makes the blood vessels expand, driving blood to the area creating that common swelling among other responses. Specialised nerve fibres are stimulated; when these are processed, the scratching or rubbing reflex is stimulated. The main mediators for the itch

Why is My Dog Losing His Hair?

You’re in the middle of your daily grooming session and you notice a thinning patch of hair on your canine companion. Without any obvious recent trauma to result in scar tissue and no replacement hair, your mind starts going to all the places it shouldn’t. A quick google search likely doesn’t help but well here at My Pet Nutritionist, we hope to give you possible solutions. There are in fact a number of reasons why your dog may start losing his hair, or having thinning areas, so let’s look at them in a little more detail. Hair growth occurs in stages: – Anagen – the growing phase – Catagen – the transition phase – Telogen – the resting phase – Exogen – the shedding phase An intact hair coat is maintained by the lifelong cycling of these phases. When a hair follicle has passed the telogen stage and shed it, if it remains empty for a period of time it is deemed kenogen. The anagen phase is restarted when epithelial stem cells are in good form. Stem cell activity is dependent on many complex interactions including: Immune cell function Nerve fibres Hormones Genetics Daylight Nutrition Circadian rhythm And stress 1. Hormones So much of a factor, there is a condition deemed hormonal alopecia in dogs. This can be linked to neutering with many owners reporting hair loss or thinning post neutering. But when we say hormones we are also considering thyroid hormones. The thyroid gland is in fact active in the initiation of hair growth and replacement. Located in the neck near the trachea or windpipe, this gland produces hormones which regulate metabolism. Both hyperthyroidism and hypothyroidism can result in hair loss in the dog although hypothyroidism is likely the more commonly occurring form of hormonal alopecia in dogs. Initially hair loss is patchy, the coat is dry, the hair is brittle and easily pulled out. Quite often hyper pigmentation occurs. In some cases, secondary pyoderma and seborrheic dermatitis may follow. The hair that remains is often stuck in the telogen or resting phase, hence it’s poor condition. Other signs of hypothyroidism includes: Weight gain Lethargy Increased susceptibility to infections Slow heart rate Abnormal nerve functioning which presents as non-painful lameness or lack of coordination Keratoconjunctivitis or dry eye Fat deposits in the corneas of the eyes Thyroid function is easily assessed through screening and if it isn’t running all on cylinders, then it can often be managed. 2. Nutrition It wouldn’t be a My Pet Nutritionist blog without mentioning nutrition now would it. Nutritional status affects hair growth and maintenance. Every cell in every body, including our dog’s, needs basic components to carry out their function. This includes immune cells, stem cells and hair follicles. The root of a hair is made up of protein cells and nourished by nearby blood vessels. As it grows, sebaceous glands near the hair follicles produce sebum which is made up of triglycerides, wax esters and cholesterol. Sebum lubricates the skin and hair to protect it from friction and therefore makes it impervious to moisture and/or pathogens. The hair moves through its phases, but new data is suggesting that even though telogen is defined as the resting phase, hair follicles aren’t doing that much resting. In fact, much cellular activity occurs during this phase so that tissues can regenerate and grow new hair. This means there is a demand for nutrients. Time and time again there has been a link made between nutritional status and hair health and growth. Low vitamin D status has been implicated in cases of alopecia Over-supplementation of Vitamin A is associated with alopecia In a Biotin deficiency signs include hair loss, Folate deficiency can result in hair, skin and nail changes Vitamin C is known to aid iron absorption, the latter being implicated in hair loss Hair loss is a common sign of zinc deficiency Hair loss can be seen in Iodine deficiency, also a mineral that aids thyroid function All things considered we would advocate afresh food diet which includes: Meat protein (haem iron is found in meat, chicken and fish and is more easily absorbed that non-haem iron found in plant foods). Oily fish (source of Vitamin D) Organ meats (good source of biotin) Leafy greens (folate came from the latin folium because it was first found in leaves!) Berries (source of Vitamin C) Meat and shellfish (source of zinc) Be mindful if you are tackling any other health concern which requires the elimination of any of these foods, we can always help you find alternative nutrient sources. 3. Stress Stress, we can confidently say is the bane of everyone’s life, including our pet’s. But what is particularly interesting is that in some cases, hair loss follows months after a traumatic event often making it difficult to connect the dots. As we have mentioned, hair cycles through different phases and all follicles can be at different stages at any onetime. Many will be in the growth phase or anagen phase before hitting telogen and ultimately shedding. But high levels of stress can cause a blanket shift in the phases and bump many of the follicles to telogen, all at the same time. The result? Bald patches or thinning. It makes sense evolutionarily. When facing a threat, what is more important?  Brain and muscle function or hair growth?  Stress triggers a sort of redistribution of resources, which in the short term is manageable. The issue is when faced with chronic stress. Hair loss as a result of trauma may not appear until the initial stressor has passed, the growth phase has been prematurely stopped, hitting telogen sooner, but then we still have to wait for the shedding to occur.  We then need the growth phase to start again, which may or may not happen depending on the recovery from the stressor or in fact whether the host is still experiencing it. Stress also depletes nutritional resources along with impeding the digestion and absorption of them and as

Tackling Atopic Dermatitis in Pets

Another one of the most common issues brought to us here at My Pet Nutritionist is Atopic Dermatitis. Most commonly seen in dogs, it can also occur in the cat. Atopic dermatitis is a multifactorial disease process, but it is defined as a genetically predisposed inflammatory and pruritic allergic skin disease often associated with IgE (immunoglobulin) against environmental allergies. The prevalence of AD is thought to be 10-15% of the canine population. Symptoms will include: Scratching Chewing Licking Recurrent skin, ear and anal gland inflammation and infections Hair loss Thickening of the skin It is thought that genetic abnormalities, along with an altered immune system and skin barrier defects all play a role. So, lets take a look at AD in a little more detail. Where it comes from and what, if anything, we can do about it. Genes Multiple gene expressions involved in skin barrier function and inflammation have been seen to go awry in canine atopic dermatitis. They have been both up and down regulated. Gene expression is like the instruction pamphlet that comes with your washing machine. Issues in gene expression is like you being sent an instruction manual in a different language and inadvertently using the 60-degree wash on your cold wash items! It’s not going to end well. Well, cheeky genes who aren’t doing what they’re supposed to, often doesn’t end well either. In dogs suffering with atopic dermatitis, data has shown: 361 genes that instruct inflammation, wound healing or immune response were up regulated. 226 genes that affect skin barrier function showed decreased mRNA. mRNA is a messenger; so low concentrations result in fewer messages. Findings here This is why certain breeds are known to suffer with AD, specifically, German Shepherds, Labradors, Boxers, West Highland White Terriers, French Bulldogs, Bull Terrier, Lhasa Apso, Springer Spaniel, Poodle, Dachshund, Miniature Schnauzer and Pugs. That said, these predispositions are also linked to geographical area, which also demonstrates how the environment can interact with genes. There is much attention being paid to the idea of epigenetics; how behaviour and the environment can affect how genes work. This is why, even if your dog is genetically predisposed, you shouldn’t throw in the towel, just yet. Skin Barrier Defects The skin is the first line of defence in our trusty immune system. This goes for our dogs too. If the skin isn’t as robust as it needs to be, then pesky allergens or irritants can get in and start to knock on doors of our second line of defence; inflammation. It is believed that part of the defects found in the skin barrier in AD cases is due to decreased concentrations of filaggrin. Not only can this be due to a genetic encoding error, but certain enzymes in the skin can breakdown filaggrin. The more enzymes, the more filaggrin gets broken down. Filaggrin is a protein found in the skin, and it binds to keratin filaments. This forms a structure within the skin cells. Filaggrin is essential to skill cell maturation, and in forming the outermost protective layer. It also forms part of the natural moisturising substance found in the skin; without it,cells dry out. This is why low levels of filaggrin result in dry, cracked skin. There is also evidence that filaggrin associated atopic eczema is more likely to lead to food sensitisation and inhalant allergens. Findings here Despite there being a genetic cause for filaggrin deficiency, the importance of maintaining a robust skin barrier is essential. Please take a look at our top tips for promoting skill health here. Altered Immune Response As we have mentioned, if pesky allergens or irritants get past the first line of defence, they soon feel the full wrath of the immune response. What starts with inflammation, will venture to a targeted attack in order to eradicate the invader. In the case of a defective skin barrier, the system will regularly be exposed to potential threats, of which the immune system must deal with. This constant state of firefighting ensures a steady level of inflammation throughout the body, which is why cases of dermatitis are often paired with food sensitivities. This is why tackling chronic inflammation is a key part of a dermatitis plan. As you have likely gathered, ensuring a robust skin barrier is essential in managing atopic dermatitis, but so is modulating the immune response and inflammation. Here are our top tips in tackling those three areas. Polyphenols Polyphenols are known to interfere with pro-inflammatory mechanisms. They have been seen to act upon keratinocytes which attenuate skin inflammation. Not only that but they have been seen to hamper toxicity of bacteria which regularly colonises the skin of atopic dermatitis affected patients. Polyphenols have been seen to inhibit the activation, proliferation, and function of Th2 cells which are key players in allergic reactions. Specifically, in the inflammatory response in allergic reactions. This has also been demonstrated during re-exposure to the allergen, suggesting that offending allergens may even be reintroduced at a later stage. Polyphenols are micronutrients found in certain plant foods; they are packed full of antioxidants. Their original role in the plant is to protect against UV radiation and of course aggression by pathogens. For that reason, they tend to contribute bitterness, astringency, colour, flavour, odour and oxidative stability. Under the umbrella of polyphenols, you will find phenolic acids, flavonoids, stilbenes and lignans (and a few more). Along with being anti-inflammatory and anti-microbial, the antioxidant capacity of phenolic compounds is also key to skin health. Oxidative stress is the imbalance between free radicals (the exhaust fumes of work) and antioxidants. Oxidative stress can damage the structure of the skin and negatively influence immune system function. Interesting, polyphenols have been seen to alter certain gene expression in the dog. Findings here So, all things considered, they are pretty nifty things to offer in your dog’s fresh food diet. Phenolic Compounds for The Dog Blackberries Raspberries Strawberries Blueberries Apple Pear Curly Kale Broccoli Green Tea (organic and decaffeinated) Parsley Chamomile Pomegranate Be mindful

Is Your Dog A Yeasty Beast?

Another particularly common issue we see here at My Pet Nutritionist is yeast! More technically known as candida, it is actually harmless when kept in check. The issue is when our dog’s system goes a little awry and can’t keep those little blighters from colonising. Whilst it sounds like a military operation, the dog’s system functions very much like that. Let’s take a look at yeast in a little more detail and how we can armour dog’s defences for a fighting chance! What is Yeast? Candida is an opportunistic fungal pathogen. It is a normal part of the gastrointestinal flora and genital tracts. Healthy systems are more than capable of keeping it in check with their beneficial bacteria. The issue arises when there aren’t enough good guys to keep the bad guys in check. The good bugs we find in our dog’s gastrointestinal tract will compete with the bad bugs for food sources and attachment sites. As we know there are a number of factors that can skew the microbial community found in our dog’s system. Antibiotics Broad spectrum antibiotics target all bugs,so whilst they get rid of the ones running amok, they also wipe out the beneficial ones too. Whilst the microbiome can recover to some extent, eventually; this takes time and there’s evidence which suggests key species are never fully repopulated. Findings here Stress There are clear links that stress, whether physical or emotional, affects the composition of the gut. On many occasions, stressor infliction significantly reduces the good guys. This has been associated with increased inflammation in the gut, which then continues the cycle. Findings here The Environment There is a huge amount of data which shows exposure to environmental pollutants significantly alters the gut microbiome. This includes bisphenols, phthalates, organic pollutants, heavy metals and pesticides. Bisphenol is an industrial chemical used to make hard, clear plastic. It is also found in epoxy resins which is often used as a protective later in some metal food and beverage cans/tins. Bisphenol has been linked to reduced microbiome diversity, and a significant decrease in protective bacteria. Phthalates are plasticisers and stabilisers found in vinyl flooring, clothing, detergents, personal care products, toys, medical equipment, and plastic packaging. Because they are non covalently bound to materials, they can leach into the environment. Phthalate exposure induces microbiota changes and has been known to inhibit the synthesis of certain short-chain-fatty acids. Heavy metals are associated with reduced microbiota diversity along with the altered metabolism of vitamin E and bile acid. Findings here Pesticides are renowned for altering the gut microbiome. This not only includes the pesticides administered to pets (flea and tick treatments), but also those found in the environment, particularly those sprayed on public footpaths. What is also worth considering is that antibiotic use has been seen to increase bioavailability of pesticides within the body. Findings here You are what eat! Of course, nutrition also plays a part in modulating the gut microbiome. But we always knew that. We are all pretty selfish in evolutionary terms, and this includes the bugs we find throughout our body. Our ultimate aim, and theirs, is to survive. So, we just need to modify how many of them actually do. This means keeping the colonies of good bacteria strong, so offering our dogs a diet full of pre and probiotic foods! Prebiotics are like the fertilisers in the garden, they help to feed and grow the beneficial bacteria in our garden. Probiotics however contain live organisms which can contribute to the population of the garden. Findings here There are a number of prebiotic foods suitable for dogs and they include mushrooms, chicory root, garlic and dandelion greens. Probiotics include fermented food, but supplements are available; soil-based are a good call for your canine friend (hold off on the fermented food until later, if your dog has already developed an overgrowth). Yeasts seem to like sugar as fuel, so diets high in grains, starches and other carbohydrates seem to contribute to an overgrowth. Generally, certain beneficial bacteria will metabolise these sugars, keeping candida in check by disrupting its food supply, but in the absence of good bacteria, candida is partying it down at the all-you-can-eat buffet! Immunity A weakened immune system is also a huge risk factor for developing a candida overgrowth. Whether this has been a natural progression over a period of time for a range of factors, or even due to medications like steroids. Immune function has natural peaks and troughs, young dogs and ageing dogs naturally have a lower function, but pre-existing conditions along with a range of medications can affect it too. The immune system is like a nosey neighbour. It keeps tabs on everything going on in the body and knows when something isn’t quite right. When it identifies something as non-self, it sends the army to fight the foreign invader and, all being well, wins, before sitting back down with its cup of tea. The issue arises when it can’t get up from its chair and so the foreign bodies are left to invade. There are a number of factors which can compromise immune function from sleep, to stress and nutritional status; there are several key nutrients essential to its performance.  So, supporting this is essential in the prevention and treatment of any bacterial overgrowth. Top Tips: Adequate rest Reduced exposure to stress Nutrient dense diet withVitamins A, C, D and B’s, along with Zinc, Selenium, and Iron Address any pre-existing issues like inflammation in the digestive system or poor pancreas function which can contribute to poor nutritional status Findings here Careful use of medications like antibiotics, NSAIDs and steroids Findings here on Vitamin D Findings here on Zinc What if your dog has already got an overgrowth? If indeed your dog has developed a candida overgrowth, you will notice symptoms like: Ear infections Greasy coat Sores Odour (yes, that cheesy type of smell) Green/yellow discharge Crusty/flaky skin Hair loss Itching/scratching Incessant licking/grooming of an area due to irritation Rust

5 Top Tips for Skin Health in Your Dog

Here at My Pet Nutritionist, skin issues are one of the most common complaints from dog owners. Whilst there are a number of factors that can result in not-so-comfortable skin for your companion, there are also some top tips that can start you off the right foot. So, let’s take a look at the skin in a little more detail and what can do to promote its health. The skin is the largest organ of your dog’s body. It consists of three major layers: The Epidermis – (Epi – upon or above) this is the outer layer of skin, the protective layer. The Dermis – the dermis supports and nourishes the outer layer. It provides strength and elasticity. Here you will find collagen fibres, sweat glands, sebaceous glands, and hair follicles. You will also find cells that release histamine and other inflammatory mediators when faced with an allergy or injury. The Subcutis – (sub meaning under or below) this in the innermost layer of the skin, where you will find fat and muscles. Subcutaneous fat provides insulation, padding and storage for reserve energy. Not only does the structure of the skin prevent water and electrolyte loss to help maintain body homeostasis, but it forms a protective barrier which helps protect against infections, parasites, and the elements. This is the often-forgotten role of the skin –that it forms part of the immune system. We have three lines of defence in the immune system: The first line of defence are the physical barriers, the skin and mucous membranes of the gut and respiratory tract. The second line of defence is defined as innate immunity. This system surveys and neutralises pathogens by mounting an inflammatory response. This system communicates with the third line of defence which is adaptive immunity. Adaptive immunity provides a specific and tailored response, deploying T and B cells. Ultimately, for us, or our dogs to survive and thrive, we, and they need robust immune defences, so it makes sense to want to strengthen our first line as much as possible. 1) Sleep! In the dermis of your dog’s skin, you will find connective tissue which contains collagen. Collagen fibres play a vital role in maintaining structural integrity and it is supported by hyaluronic acid (in ageing human, skin hyaluronic acid is often absent leading to the presence of fine lines and wrinkles). Cortisol, however, significantly decreases the synthesis of hyaluronic acid. Findings here As we know, cortisol is one of the main stress hormones, released in times of fight or flight. In short, stress results in lower hyaluronic acid, impacting collagen and therefore skin structure. There are many stress triggers for your canine companion, but lack of sleep is often missed. Not only does low sleep duration influence the perception of stress for days following, but sleep deprivation is in fact a form of neurobiological and physiological stress (or torture, for us at My Pet Nutritionist). In 1894, Marie De Manaceine was fascinated with sleep deprivation. She had established that mental disturbance resulted from partial insomnia, but she wanted to know more. So, in her Lab, she recruited puppies. 10 to be specific; aged 2, 3 or 4 months old. Whilst they continued to be fed by their mother, she kept them in constant activity. In short, she deprived them totally of sleep. After 96-120 hours, the puppies were irreparably lost. We shed a tear when we read this! What is interesting (despite it being macabre), is that when puppies were starved, they could be saved after 20-25days. This wasn’t possible when they were sleep deprived. Marie found that sleep deprivation significantly affected the puppy’s brains. When they were starved, the brain was left almost spared. But, in the absence of sleep; fat degeneration, blood vessel abnormalities and haemorrhaging occurred. Findings here In a world that never sleeps, both us and our dogs really need to. Adult dogs, in a laboratory setting, when left, will sleep on average for around 13 hours per day. Puppies can sleep anywhere between 18-20 hours per day. Dogs are diurnal, meaning they are active during daylight hours. Rest occurs during dark periods with activity increasing the two hours before light. Dogs have a natural rest period around noon and then reduced activity during the afternoon. Findings here Interestingly, the experiences that your dog has, can affect the type and quality of sleep they experience. Studies have found that after a negative experience, dogs will fall asleep more quickly. It is thought that this is a protective sleep, in response to stress. This should be in the forefront of your mind. It is all too easy to attribute an “exhausted” dog to the busyness of the day. Be mindful, their sleeping habits could be more indicative of their experience. Findings here Sleep is vital for your dog’s overall health, but also in helping their body synthesise the compounds it needs to build a robust skin. Build in plenty of rest time for your dog, at the times they would naturally do so. 2) Feed Fresh Food! We probably sound like a stuck record here at My Pet Nutritionist, but fresh really is best! Processed, high glycaemic index foods wreak havoc with skin! There are a few different reasons, but glycation is one of them. Glycation is the modification of proteins or lipids after exposure to sugars. You may notice them referenced as AGEs, advanced glycation end products. Glycation leads to a loss of protein function and impaired elasticity of tissues like blood vessels, tendons and of course skin. AGEs have been associated with many metabolic disorders and are closely related with renal failure and diabetes. They also increase with age. AGEs can be synthesised in the body, but total load also includes dietary exposure. It is clear that foods ranking high on the glycaemic index result in a higher accumulation of AGEs.  Not only that, but maillard reactions, those generated in the heat processing of foods, also result in AGEs. Another reason why

Vaccinosis: Damage Vaccinations Can Cause Your Pet

Autoimmune disease, irritable bowel disorders, lupus, thyroid issues, eisonophilic skin disorders, chronic skin disease and allergic dermatitis, not a list any owner wants to pair with their pet, but sadly all of these diseases can be vaccine-related conditions. We can identify them as vaccine related conditions because symptoms are concomitant with vaccination date. We deem this reaction as vaccinosis. And sadly, it is far more prevalent than we could even imagine. At MPN, we see the correlation of vaccination and disease in many of our clients. So let’s take a look at where we started, and how we ended up in such dire straights. The smallpox vaccine was introduced in 1796 after Edward Jenner observed that milkmaids who had previously caught cow pox didn’t catch smallpox. The idea was that exposure to killed or weakened virus/bacteria that cause disease can prime the immune response, but it doesn’t actually make the host sick. So, vaccinations allow the host to develop immunity without having to suffer the disease. To this end, smallpox is now declared eradicated. There is no doubt that vaccination has been progressive in public health concerns, for both humans and pets, but they were never meant to make the host sick.  For a number of reasons, the current vaccinations schedule for our pets, is. There is increasing evidence that over-vaccination is associated with the development or aggravation of immune-mediated disorders and chronic diseases in individual pets that are genetically predisposed. This raises a particularly interesting element that has perhaps been missed when developing the blanket vaccination schedules for our pets. Twin studies, in humans have demonstrated there is a clear genetic role in vaccine response. A growing list of genes have been associated with immune related functions critical to immunological response and much data is concluding it is the status of these genes that is key to immune response. Human data is highlighting that this is one of the reasons vaccines can either elicit partial, complete or failure to protect individuals treated under the same conditions. This would also suggest that the opposite is therefore true; gene status could elicit partial or complete adverse reaction, or hopefully failure to demonstrate adverse reaction. Genes are a set of instructions and there are a number of factors that can affect how they are expressed. This is likely understood in the canine world to some extent because most vaccines are advised as safe for healthy dogs but not those with a compromised immune system. So, what constitutes a compromised immune system? The primary role of the immune system in dogs is to protect against foreign invaders, or abnormal cells that invade or attack. The immune system must distinguish between self and non-self. Substances that stimulate a response are antigens. These can be contained within bacteria, viruses or microorganisms or cancer cells. They may also exist on their own, like pollen or food particles. There are three lines of defence, physical barriers, non specific immunity and specific immunity. Physical barriers are the first line of defence, they include the skin, the cornea of the eye and the membranes lining the respiratory, digestive, urinary and reproductive tracts. The key is to keep these barriers unbroken. These barriers are also defended by bacteria and secretions that contain enzymes that can destroy harmful bacteria. Examples include eye tears, secretions in the digestive tract and the microbiome in the gut. Nonspecific immunity should be present at birth; it treats all foreign substances in the same way. Inflammation results in white blood cells travelling into tissues to kill invading organisms and remove injured cells. Specific immunity is acquired and developed as the immune system encounters different antigens, it learns the best way to attack and develops a memory for that specific antigen. It takes time to develop a response, but in future encounters, the response is more rapid. Specific immunity involves the action of lymphocytes (B and T cells), antibodies, antigen presenting cells and cytokines. Most vaccines work by stimulating the development of specific immunity. But the immune system does not always function properly, it can be underactive and overactive. An underactive system puts the animal at risk of infection, but an overactive immune system can attack parts of its body that it misidentifies as being foreign. This is what happens in autoimmune conditions. The immune system can also overreact and produce too many antibodies or other chemicals; these are what we see as hypersensitivity or allergic reactions. Not only do we have to ensure the physical barriers remain healthy, but we also must ensure that responses are just right. We know that genes play a role in this, but so does the environment your dog (exposure to toxins, chemicals and pesticides etc) alongside nutrition. Each cell in every body uses chemical reactions to build some of the materials that it needs, converting substances provided by the diet into other chemicals necessary for normal functioning. This is why the immune system has its own micronutrient (vitamin and mineral) requirements. For example, Vitamin A helps to maintain structural and functional integrity of mucosal cells in innate barriers like the skin and respiratory tract, Vitamin D stimulates immune cell proliferation and cytokine production, helping to protect against infection, B12 has roles in natural killer cell functions just as folate maintains natural killer cells. Many micronutrients play a role in protecting against reactive oxygen species and reactive nitrogen species which are produced when pathogens are killed by immune cells. Findings here So, there are many things that can compromise an immune system, which also informs whether the dog is a candidate for vaccination and indeed subsequent and frequent booster vaccinations. Signs your Dog may have a compromised immune system: Tiredness/lethargy Increased stress levels Digestive issues Slow healing wounds Frequent infections (eyes, ears etc) Delayed growth/development Skin sensitivities/allergies Joint stiffness and disease Other diagnosed disease If your dog is suffering with any pre-existing health conditions, it pays to consider titre testing. No animal should be vaccinated with a compromised immune system.

To Lepto or not Lepto? That is the Question

A global infection of both humans and animals, leptospirosis is on the tip of most owners and dog professional’s tongue. Caused by the pathogen icleptospira spp. it is a major zoonosis, with infection acquired from wild and domestic animals. Canine leptospirosis presents very similarly to the syndromes presented in other species with hepatic, renal and pulmonary ramifications. In short, it’s pretty rough, but vaccine induced immunity is restricted to serologically related serovars and is generally very short-lived; therefore, needing annual revaccination. If there are more than 230 serovars belonging to at least ten pathogenic species, does the vaccine even pose benefits? Or do the risks outweigh them? We are going to look at the science and explore both sides to this story.  Fancy coming along for the journey? Leptospirosis is characterised by fever, jaundice, vomiting, diarrhoea, renal failure, haemorrhages and ultimately death. However, for those who recover, they may become asymptomatic renal carriers for extended periods and shed infectious leptospires into the environment. This is a large source of infection, as rats can be carriers but do not show signs of infection. Whilst treated dogs can shed leptospires, so can vaccinated dogs. This raises the first red flag; is this potentially increasing exposure? Most signs of leptospirosis become apparent in the first week after infection; younger dogs, less than 1 year of age tend to get the most severe forms of leptospirosis and 87-100% of infected dogs will have some degree of renal implication. There do appear to be different clinical parameters of the infection: Peracute Disease: super-sudden onset which usually affects younger dogs with an overwhelming exposure. The large amount of toxin causes rapid death before the kidney or liver disease even occurs. Acute Disease and Subacute Disease: this is the classic form which manifests as fever with bruising and bleeding, general muscle pain and painful abdomen from kidney and/or liver disease. There may be jaundice and inflammation in the eyes. Chronic Disease: recurring fevers, chronic hepatitis, chronic kidney disease, uveitis, poor appetite and weight loss. However, leptospira interrogans sensu lato is sensitive to doxycycline which is a readily available antibiotic. Leptospires are cleared from the blood within 24 hours of starting antibiotics. But it does take around 7 days to clear from the urine. Prognosis, depending on organ damage is 80-90% with appropriate treatment. There are, however, other serovars, like the pomona which is associated with more severe disease and in severe kidney cases, dialysis can be required which is often limited. So, whilst treatment is largely effective, if started soon enough, there was clearly enough concern to develop a vaccine. Vaccination against leptospira interrogans sensu lato is available for the seravars canicola, grippotyphosa, pomona and icterohaemorragiae. Some vaccines coverall four serovars, whereas some cover two of the four. This is where you will recognise the common lepto two or four vaccine. Vaccination against canicola and icterohaemorragiae has been traditional for dogs and vaccination overall, has been seen to reduce the severity of the disease, but will not prevent infected dogs from being carriers. Note, it supposedly reduces severity, it doesn’t necessarily prevent occurrence. The leptospirosis vaccine was soon associated with a higher chance of vaccine reactions. This is a result of human research into leptospirosis. In the U.K. in 2014 , over 2000 reports of Novibac L4 adverse reactions have been reported to the VMD (Veterinary Medicine Directive) and around 120 suspected deaths related to vaccinosis. In addition to this, data suggested that the severity of the disease was associated with the intensity of the immune response. In short, the more intense and early the response, the more severe the disease. Findings here If our immune system, and our dog’s, is primed to take out antigens and protect, why does a more intense response seem to make things worse? An intense immune response induces a high level of inflammatory cytokines which can result in severe tissue lesions. Immunity is like the porridge in Goldilocks. It can sometimes be too cold (lacking) and sometimes too hot (overzealous). Ideally, we want it, just right. There are many things that affect immune responses, in the case of lepto, a more intense response was associated with previous infection. Fever was induced by virulent injection in previously immunised rabbits whereas non-immunised rabbits exhibited no fever after injection. So, in this case, the immunised rabbits fared poorer than non-immunised rabbits. See where we might be going with this? So we are vaccinating to potentially reduce, not prevent the severity of infection but here it appears those rabbits immunised, had a more severe reaction to exposure. But, stress, nutrition and the environment can all affect immune responses too.  So too, can genes. This can help explain why some animals are more, or less susceptible to pathogens (or vaccines) than others. And explain the age-old statement, but my dog was fine! It therefore raises no eyebrows when reports appear of clinical leptospirosis in numerous dogs when they had previously been vaccinated. You’ll remember this from earlier, when it was deemed to reduce severity, not necessary prevent occurrence. This was however, associated with vaccine type. In short, the dogs were vaccinated against only two of the many pathogenic serovars. So, in walked Lepto 4. But these new vaccines were associated with further increases in vaccine reactions, not limited to local swelling or hypersensitivity, but including cardiac abnormalities. Specifically, heart murmurs appearing between first and second vaccination. Findings here What is particularly interesting in studies exploring the use of lepto 4 vaccines, is that dogs demonstrated antibodies to serovars not vaccinated against. Researchers have therefore concluded that natural exposure (not vaccine exposure) to serovars provide positive titre results. Not only that, but in cases of vaccinations up to 1745 days previously, some dogs still demonstrated antibodies. This raises a question around the need for such frequent booster vaccinations. The take home from this particular study was “seroconversion following vaccination differed considerably among individual dogs.” Yet they still concluded that, “in the light of the high incidence and

What Food Should My Cat Eat?

Cats are obligate carnivores. What this essentially means is that cats rely on nutrients in animal tissues to meet their specific requirements. Not plants…. but animal tissues. So, let’s explore the world of the cat in a little more detail and see how we can support their nutritional needs to not only survive, but thrive. Evolutionary events have led to a unique digestive and metabolic peculiarity. Whilst in many other species, we have the three macronutrients, fat, protein and carbohydrates, cats seem to have no physiological requirements for carbohydrates. Now where this becomes interesting is that the brain and red blood cells have an absolute need for glucose, and we know that carbs equal glucose, so where do cats get glucose from? Surely without carbohydrates they would be forever hypoglycaemic? Well, through a process of gluconeogenesis, they produce glucose. Us humans, and dogs too can perform this process, but cats have it down to a fine art. Gluconeogenesis is the metabolic process by which glucose is produced from non-carbohydrate precursors, like lactate and amino acids (and we know that amino acids are the building blocks of protein). All amino acids, except leucine and lysine are gluconeogenic and alanine is the major gluconeogenic amino acid. The process mainly occurs in the liver, but some processes are carried out in the kidneys and a small portion is carried out in the intestines. It is thought that cats evolved with the process because of their proportionally large brain. As we have mentioned, the brain has an absolute need for glucose, and it is thought that the brain demand for glucose in cats is around 30% whereas for us humans who have a much larger brain is 44%. Cats wouldn’t have been able to consume high enough levels of carbohydrates from their natural prey diet, so their body had to adapt to survive. This evolution has resulted in a small capacity for starch digestion, having limited salivary amylase which is similar to dogs. Amylase is found in the feline pancreas and chyme, but the activity is incredibly low compared to other animals. Their pancreatic maltase activity is also extremely low. Cats seem to know this and when given the opportunity will choose low carbohydrate but high protein diets in order to balance their own macronutrients. They also don’t appear to have developed a sweet tooth. In evolutionary terms, us humans would have stocked up on sweet-tasting foods, but cats didn’t need to. To that end, they don’t show any preference for natural sugars or artificial sweeteners. In the absence of protein, cats will opt for fat. When fat and protein is limited, but carbohydrate is unlimited, cats appear to experience nutritional deficits. This is largely due to their requirement for taurine. Taurine is present in a range of meats and seafoods but is essentially absent from plant material. This is another reason why cats are deemed obligate carnivores. Dietary deficiency of taurine is linked with a range of important conditions. Retinal Degeneration More commonly known as retinal atrophy, it is the complete or partial wasting of the retina. The cells degenerate over time, eventually leading to blindness in the cat. First signs include the eye being more reflective and the pupils are more dilated than normal. Lesions are usually bilaterally symmetrical. A dietary deficiency must be present for several months before changes appear but lesions are progressive whilst the cat is on a deficient diet, although visual defects don’t tend to appear until the late stages of degeneration. Reproduction Taurine deficiency is well known for having marked effects on reproductive performance and on the growth and survival of the young. Cerebellar dysfunction often occurs in kittens of taurine deficient mothers. Dilated Cardiomyopathy Taurine deficiency can lead to weakening of the muscle cells in the heart, causing a condition called dilated cardiomyopathy (DCM). Taurine is essential in membrane stabilisation. Many cases of feline dilated cardiomyopathy are associated with low plasma taurine levels and when administered with taurine, they show an improvement. Sadly, when left untreated for too long, dilated cardiomyopathy will progress to heart failure and death. The importance of taurine in commercial cat food was noted in the late 1980’s; following reformulation of cat foods, cases of taurine related dilated cardiomyopathy decreased from 28% to just 6%. Findings here Including taurine, eleven amino acids are recognised as essential for the cat, but some have a higher utilisation than others. Taurine is necessary for vision and the function of the cardiac muscle, nervous system, immune system, and reproductive systems. Arginine is used in the urea cycle and methionine and cysteine are incorporated into antioxidants, hair and urinary outputs but are primarily gluconeogenic amino acids, catabolised to provide energy. With their incredible utilisation of amino acids, cats present what is known as a carnivore connection. This is a bundle of carbohydrate-sensitive conditions, first noted in humans who were late to join the carbohydrate-eating party (Paleo-Indians, Australian Aborigines for example). In short, there is a higher incidence of conditions like glucose intolerance, insulin resistance and diabetes. However, other data has suggested that carbohydrate content is of little effect, and these conditions are instead associated with overweight or obese cats. 44% of cats in the UK are deemed as overweight or obese by veterinary professionals. Whereas when surveyed, only 8% of owners think their cat needs to lose any weight. Obesity is defined as abnormal or excessive fat accumulation that presents a risk to health. This is a result of excess calories that the body cannot use; these calories can be from any of the macronutrients. It is often considered that a major factor driving obesity is the practice of free-feeding, in which a bowl of dry food is available for consumption by a cat throughout the day, and simply topped up as it runs out. There is also recent research that suggests feeding cats just once a day may control hunger better than several feeds a day. Findings here This study demonstrated that the cats showed a faster

Tear Stains: Is Your Dog A Cry Baby

Whilst dogs do demonstrate emotions, and you’ve probably seen images doing the rounds on the internet, dogs don’t cry. They have tear ducts like us humans, but when we are balling at the dog dying in, I am Legend, our dog is probably still dreaming of squirrels, KO’d in front of the fire. Not only do our tear ducts allow us to cry, but they form part of a larger system which has a nifty function. This function applies to our dogs too. The Tear System The tear system in the eye keeps it wet enough to be comfortable; you may have come across certain breeds of dog with a condition known as dry eye. This is exactly what it says on the tin, the eye is simply too dry. Tears contribute to eye defences as they contain antimicrobial factors and wash away foreign bodies and dirt. Not only that, but because the cornea has no blood vessels, tears also provide a way of brining nutrients to its cells. The tear system has glands that make the tear fluid, openings that let the tears out and ducts inside of the nose that lets the tears drain through. After washing over the corneal surface, tears flow into the nasolacrimal system, draining into the nasal or oral cavity. The nasolacrimal duct begins with two small openings in the eyelids near the nose, one on the upper eyelid and one on the lower eyelid. Tears are composed of water, electrolytes,proteins, lipids, and mucins; between 60 and 500 different proteins have been identified in tear film. They are seen to have three layers. The mucous layer contains mucins, immunoglobulins, salts, urea, enzymes, glucose, and leukocytes. Mucins form a barrier which protect against pathogens and debris. The gel-like barrier also facilitates the movement of particles, preventing shearing damage. The aqueous layer consists of water, electrolytes, proteins, anti-microbial agents, cytokines, vitamins, immunoglobins, peptide growth factors and hormones. It lubricates, washes away foreign bodies, and nourishes the cornea with oxygen and proteins. Growth factors, vitamins and electrolytes are key to epithelial (cells that line the surface) integrity. The lipid layer, the outermost layer, contains a range of lipids. It reduces evaporation from the underlying aqueous layer and limits contamination from dust and bacteria. Tears are crucial to eye health. Tear secretion is complex. It responds to the conditions faced by the eye, but also influenced by a range of hormones and cytokine balance. Cytokine is derived from two Greek words, cyto meaning cell and kinos meaning movement. Cytokines are cell signalling molecules that aid communication in immune responses. They stimulate the movement of cells towards sites of inflammation, infection, and trauma. Cytokines are agents that modulate or alter the immune system response. Cytokines are classified into: – Lymphokines which are cytokines secreted by T cells and regulate the immune response – Pro-inflammatory cytokines which amplify and perpetuate the inflammatory process – Growth factors which promote cell survival and result in structural changes – Chemokines which stimulate migration of cells – And anti-inflammatory cytokines which negatively modulate the inflammatory response It makes absolute sense that when faced with an ocular threat, cytokine levels increase, presenting as the usual immune response, water and itchiness which is common with seasonal allergies or intolerances. But what is also interesting is that that the rest of the body can also influence tear production. Inflammation is an immunological defence against injury, infection, and allergy. Acute inflammatory response is short lived, levels are altered, the body is primed, the body fights, wins and returns to homeostasis. When there is a prolonged persistence of an antigen, chronic inflammation occurs and can have body wide ramifications. The most considered is how chronic inflammatory diseases of the gut can cause various health issues; inflammatory bowel disease for example is caused by cytokine-driven inflammation of the gut. This leads us to why, no matter what you apply to your white dog’s face, you can’t get rid of those stains. Tear Staining Epiphora as it is technically known is a condition which causes the abnormal overflow of tears. It results in reddish staining around the eyes. The physical shape of your dog can contribute to the development of it; their head shape and where their eyes sit. Some breeds of dogs can over-produce tears due to a turning in of the eyelashes or eyelid. Turning out of the eyelid is also known in Great Danes, Bloodhounds and Spaniels. There may also be congenital abnormalities resulting in too large an opening of the eyelids, common in brachycephalic breeds. Blockage of the nasolacrimal system can also result in the overflow of tears. This can be hereditary but can also be caused by inflammation of infection and in some cases tumour. There is also the risk of a foreign body lodged within the duct. However, inflammation, resulting in the overflow of tears can be infectious or immune-mediated. Supporting your dog’s immune system could be the missing piece of the puzzle when tackling tear staining. Immune Response and Inflammation There are many things that can kick start an inflammatory response in your dog: Untreated acute inflammation such as infection or injury Long term exposure to irritants (chemicals, polluted air etc) Chronic stress Over-nutrition and obesity (increased metabolic processes) Malnutrition But there are changes that can be made. Nutrition and Inflammation Dietary patterns high in refined starches, sugar and saturated and trans fatty acids have been linked to the activation of the innate immune system, resulting in an excessive production of pro-inflammatory cytokines. The consensus is that a less processed diet is associated with reduced markers of inflammation. However, calcium, magnesium, Vitamin D and Omega-3 Fatty Acids are thought to protect against inflammation. Findings here Add foods like green leafy vegetables and fatty fish like salmon, sardines, and mackerel to your dog’s diet. Beef liver is a great source of Vitamin D too! Antioxidants too help counter oxidative stress which is a key player in inflammation. Astaxanthin is a powerful antioxidant found in microalgae. It

Why Your Dog Needs Vitamin B12

Vitamin B12, also known as cobalamin, is a water-soluble vitamin which means no matter how much it is absorbed; any excess will be excreted via urine. It is critical for a range of functions in the body and if you have looked in any multivitamin aisles in the supermarket, it is one of the well-known B complex vitamins. A common deficiency in human vegetarians,disorders of cobalamin metabolism are seemingly increasing in small animal medicine. The causes of deficiency range from chronic gastrointestinal disease to hereditary disease, but what is clear is the health impact of low levels. Suboptimal B12 levels result in: Blood cell count abnormalities Disorders of lipid and protein metabolism Failure to thrive Anorexia Lethargy Vomiting Mood disorders/cognitive decline Slow healing Shortness of breath Muscle weakness Unsteady movement Increased homocysteine levels Functional folate deficiency Because the human body’s stores of B12 can seemingly last 3-6 years, low levels may take a while to be noticed. This seems to be true in our four-legged friends too. So, without further ado, let’s take a look at why it’s so important. Vitamin B12 is essential for DNA and RNA synthesis and for cellular energy production. All cells in all bodies need to know what they are doing and they need energy to do them! There are no known naturally occurring bioactive forms of B12 in plant sources. This is because B12 is synthesised by the bacteria in the gastrointestinal tract of animals, and then absorbed by the host animals. B12 is concentrated in their tissues, which is then eaten by other animals. Sources of B12 include red meat, fish, dairy and eggs. This is why human vegetarians and vegans are often low in it. Once ingested, dietary protein is partially digested by pepsin (digestive enzyme) and hydrochloric acid (HCI). Here Cbl (cobalamin) is released and binds to another protein called haptocorrin. Haptocorrin is then digested by pancreatic proteases (things that breakdown protein); freeing Cbl which can then bind to intrinsic factor. This then forms the B12 complex which travels through the small intestine. Here, there are receptors for intrinsic factor. The complex is internalised into the ileal enterocyte, and then released into the plasma, binding to a plasma protein. B12 is then delivered to those body parts that use and need it. And, there are certain many parts of the body that need and use it. Methionine Cycle B12 plays a vital role in the methionine cycle, which is involved in a range of cellular functions, particularly converting homocysteine to methionine. Methionine can be converted into sulphur-containing molecules which protect tissues,modify DNA, and ensure correct functioning of cells. Methionine also plays a role in creating new proteins in the body, which is essential when older proteins degrade. Whilst it has a role in a range of functions, there have been suggestions that cancer cells too are methionine dependent. Yet, when methionine is replaced with its precursor homocysteine, cancer cell growth is inhibited. Findings here That said, methionine is a key player in producing glutathione. Glutathione is often referred to as the body’s master antioxidant. It is composed of the three amino acids cysteine, glycine and glutamate. Glutathione is an important part of the body’s defence systems. Free radicals are like the exhaust fumes of work, work that the body carries out on a day to day basis. An imbalance in free radicals can result in oxidative stress, something which glutathione can alleviate. Glutathione depletion is often linked with low immune function and increased infection. It has also been found to be protective of skin, lens, cornea and retina damage. Findings here The balance of homocysteine is important,and B12 (along with B6) has the greatest effect on those levels. High levels of homocysteine are often linked to the early development of heart disease, along with Alzheimer’s (in humans), birth defects, blood clots, endothelial damage, and stroke. Resistance to Insulin Mouse studies have suggested that restricted B12 and methionine resulted in an increased resistance to insulin. Insulin is the gatekeeper for glucose getting into cells.  Without insulin, glucose remains in the blood without a party to go to.  It is argued that the restriction resulted in the lower availability of molecules that are vital to the process of DNA methylation (regulator of gene expression). These gene expressions were modulators underlying the development of resistance to insulin. Findings here Lipid (Fat) Metabolis Low levels of B12 have been noted to increase levels of adiposity, triglycerides, and total cholesterol. It is suggested that deficiency inhibits the oxidation of fatty acids.  In these cases, there is also an increase in pro inflammatory cytokines. Findings here The dysregulation of lipid metabolism raises another interesting element. The nervous system has a rich lipid composition. Myelin sheaths are sleeves of fatty tissue that protect nerve cells. These nerve cells carry messages around the body.  This is why low levels of B12 can lead to peripheral neuropathy. Without sufficient B12, the myelin sheath is damaged (demyelination) resulting in the disruption of nerve signals between the spinal cord and different parts of the body. This is the same mechanism that occurs in degenerative myelopathy. Whilst it is generally deemed a genetic condition in dogs (specific to certain breeds), in human studies, low levels of B12 have been associated with the condition. B12 deficiency is often a differential diagnosis to degenerative cervical myelopathy in humans too. Findings here Humans with low B12 often report progressive tingling in fingers and toes, without the ability to speak, it is unclear whether these symptoms affect our dogs too, but certainly poses food for thought in itchy cases. Findings here Anaemia The most recognised deficiency of B12 is anaemia. B12 is involved in the formation of healthy red blood cells; anaemia is when the body doesn’t have enough of them.  Pernicious anaemia is usually a result of malabsorption of B12 due to a lack of intrinsic factor, the protein found in the stomach. Without enough B12, the red blood cells don’t divide normally (thanks to

Natural Guide for Acid Reflux in Dogs

We see acid reflux rather frequently. It’s usually for a number of reasons and can be a symptom that may end up being more of a problem than anticipated. It’s not a nice thing for doggos to experience and is often telling you something is not quite right and finding out what that is, is paramount. So read on my lovely peeps, resolve your doggo’s blessed reflux. What is acid reflux? Acid reflux in dogs, also known as gastroesophageal reflux, occurs when the acid (chime: mix of acid, salts and bile) from the stomach moves into the oesophagus. It can obviously cause some discomfort and although a symptom in itself (that is not deemed dangerous), it can lead to other issues. Reflux can cause irritation, inflammation and wear on the lining of the oesophagus, leading to possible ulcers. If left for long enough, this can cause narrowing, thinning, or necrosis of the oesophagus. Also a constant regurgitation (a common symptom of acid reflux) can cause vomit to enter a dogs’ lungs and lead to further damage or aspiration pneumonia. Symptoms may be as follows: Bad breath Constipation, diarrhoea and bloating Burping, gagging, or minimal vomiting/regurgitation after a meal Dry cough Wheezing Pain after eating, such as restlessness and hunching over Inactivity or lethargy after meal Loss of appetite Weight loss There are many factors that may cause GERD, and these should be systematically evaluated when creating a treatment plan, aiming to address the reason as opposed to the disease itself. What role does acid play in the gut? Appropriate acid levels in the gut are paramount. HCL is also responsible for breaking down dietary proteins aiding in the absorption of nutrients. Healthy levels of acid (HCL) eliminates bacteria and viruses and prevents the overgrowth of pathogens in the upper GI tract, so hypochlorhydria (low HCL) can be a risk factor for SIBO (small intestinal bacterial overgrowth), fungal overgrowth, intestinal permeability and possible sensitivities and allergies. Acid in the stomach can be too high but most commonly, is presents as too low, incapable of fully digesting and emptying food into the small intestines, allowing chime to sit in the stomach and allowing regurgitation. There is often the misconception that it’s often too high and therefore must be suppressed by drugs. Research has proven that a lack or suppression of gastric acid (HCL), has been associated with an increase in bone fractures, possible autoimmune disease, impaired absorption of B12, iron and magnesium. Poor gut health and reflux can be linked to allergies, arthritis, autoimmune disease, itching and rashes, fatigue, anxiety, cancer, and so much more. In short, if the gut isn’t functioning at full capacity, then neither is your pet’s health. Why is your dog experiencing acid reflux? Stress is often a low grade release of cortisol that can slow down digestion, creating a bolus of food in the stomach, that can sit around, coming up as regurgitation, rather than emptying into the small intestines in a timely fashion. Poor gut motility sometimes linked to poor food (dry food) or neurological dysfunction. Structural issues can be the cause such as obstruction, a loose dysfunctional lower oesophageal sphincter, hiatal hernia or inflammation caused from disease such as megaesophagus. Food intolerances, sensitivity and allergies can create immune dysfunction and a less hospitable digestive environment. Poor gut microbiota, yeast overgrowth, bacterial overgrowth, SIBO (small intestinal overgrowth), sometimes from antibiotic use. Poor immunity and gut immunity (integrity of the ‘one cell epithelial of the gut’), can cause inflammation and a lower level of acid which can slow down protein digestion and cause regurgitation. Disease such as a liver disease, pancreatitis, IBD (inflammatory bowel disease). Nutritional deficiencies. Being overweight. Conventional Veterinary Approach to Acid Reflux Vet’s often used drugs as an intervention and whilst it might alleviate initial symptoms, it is not a long term solution and implicates longer term issues. Proton pump inhibitors (PPIs), inhibit the gastric acid production and are amongst the top 10 most commonly prescribed drugs in the world for humans and pets. Pro-kinetic medication is sometimes used to help move food through the digestive system and strengthen the oesophageal sphincter muscles. The above aren’t really successful options long term and most certainly do not address the cause. Whilst inhibitors may give short term relief, a more holistic approach is far more successful than unnaturally suppressing HCL levels. The conventional approach generally believes that acid is overproduced. Whilst this is possible, it is deemed to be the reverse in many circumstances. How Diet and Supplements can Help The gut is the epicentre of immunity and health. If your dog’s digestive system is not working correctly, then nothing else will be. A symptom of acid reflux is telling you there is a dis-ease in the body and something needs to change to rectify it. Determining the reasons why are key. Is the food suitable for your dog? Are you feeding a commercial dry food? Are there nutritional deficiencies? Is there stress? Is the gut functioning properly? Nutrition Looking at suitable diets and food for your pet is essential. A fresh and balanced diet rich in easily digestible proteins, good fats and vegetables (fibre) can help support gut microbiota and stomach acid levels. Home made cooked or raw food are often best in this instance Findings here Processed foods and sugars can cause inflammation in your dog’s stomach, decrease acid levels, triggering acid reflux symptoms. Certain foods can often be an aggravator of reflux, so understanding what might be bothering your dog is essential. If feeding a fresh diet has not worked and you are at a loss. Doing a food sensitivity test can help in removing the culprits. An elimination diet is the best way forward as intolerance and allergy testing can be inconclusive. Low dietary fibre intake is associated with decreased stomach and gut motility and delayed gastric emptying. Low fibre findings are mostly found in humans, but our counterparts experience the same pathogenesis in acid reflux and adding insoluble fibre, may help. Findings here Checking